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Preface

Markov chains are the simplest mathematical models for random phenom-
ena evolving in time. Their simple structure makes it possible to say a great
deal about their behaviour. At the same time, the class of Markov chains
is rich enough to serve in many applications. This makes Markov chains
the first and most important examples of random processes. Indeed, the
whole of the mathematical study of random processes can be regarded as a
generalization in one way or another of the theory of Markov chains.

This book is an account of the elementary theory of Markov chains,
with applications. It was conceived as a text for advanced undergraduates
or master’s level students, and is developed from a course taught to un-
dergraduates for several years. There are no strict prerequisites but it is
envisaged that the reader will have taken a course in elementary probability.
In particular, measure theory is not a prerequisite.

The first half of the book is based on lecture notes for the undergradu-
ate course. Illustrative examples introduce many of the key ideas. Careful
proofs are given throughout. There is a selection of exercises, which forms
the basis of classwork done by the students, and which has been tested
over several years. Chapter 1 deals with the theory of discrete-time Markov
chains, and is the basis of all that follows. You must begin here. The
material is quite straightforward and the ideas introduced permeate the
whole book. The basic pattern of Chapter 1 is repeated in Chapter 3 for
continuous-time chains, making it easy to follow the development by anal-
ogy. In between, Chapter 2 explains how to set up the theory of continuous-
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time chains, beginning with simple examples such as the Poisson process
and chains with finite state space.

The second half of the book comprises three independent chapters in-
tended to complement the first half. In some sections the style is a lit-
tle more demanding. Chapter 4 introduces, in the context of elementary
Markov chains, some of the ideas crucial to the advanced study of Markov
processes, such as martingales, potentials, electrical networks and Brownian
motion. Chapter 5 is devoted to applications, for example to population
growth, mathematical genetics, queues and networks of queues, Markov de-
cision processes and Monte Carlo simulation. Chapter 6 is an appendix to
the main text, where we explain some of the basic notions of probability
and measure used in the rest of the book and give careful proofs of the few
points where measure theory is really needed.

The following paragraph is directed primarily at an instructor and as-
sumes some familiarity with the subject. Overall, the book is more focused
on the Markovian context than most other books dealing with the elemen-
tary theory of stochastic processes. I believe that this restriction in scope
is desirable for the greater coherence and depth it allows. The treatment
of discrete-time chains in Chapter 1 includes the calculation of transition
probabilities, hitting probabilities, expected hitting times and invariant dis-
tributions. Also treated are recurrence and transience, convergence to equi-
librium, reversibility, and the ergodic theorem for long-run averages. All
the results are proved, exploiting to the full the probabilistic viewpoint.
For example, we use excursions and the strong Markov property to obtain
conditions for recurrence and transience, and convergence to equilibrium is
proved by the coupling method. In Chapters 2 and 3 we proceed via the
jump chain/holding time construction to treat all right-continuous, mini-
mal continuous-time chains, and establish analogues of all the main results
obtained for discrete time. No conditions of uniformly bounded rates are
needed. The student has the option to take Chapter 3 first, to study the
properties of continuous-time chains before the technically more demand-
ing construction. We have left measure theory in the background, but
the proofs are intended to be rigorous, or very easily made rigorous, when
considered in measure-theoretic terms. Some further details are given in
Chapter 6.

It is a pleasure to acknowledge the work of colleagues from which I have
benefitted in preparing this book. The course on which it is based has
evolved over many years and under many hands — I inherited parts of it
from Martin Barlow and Chris Rogers. In recent years it has been given
by Doug Kennedy and Colin Sparrow. Richard Gibbens, Geoffrey Grim-
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mett, Frank Kelly and Gareth Roberts gave expert advice at various stages.
Meena Lakshmanan, Violet Lo and David Rose pointed out many typos and
ambiguities. Brian Ripley and David Williams made constructive sugges-
tions for improvement of an early version.

I am especially grateful to David Tranah at Cambridge University Press
for his suggestion to write the book and for his continuing support, and to
Sarah Shea-Simonds who typeset the whole book with efficiency, precision
and good humour.

Cambridge, 1996 James Norris






Introduction

This book is about a certain sort of random process. The characteristic
property of this sort of process is that it retains no memory of where it has
been in the past. This means that only the current state of the process can
influence where it goes next. Such a process is called a Markov process. We
shall be concerned exclusively with the case where the process can assume
only a finite or countable set of states, when it is usual to refer it as a
Markov chain.

Examples of Markov chains abound, as you will see throughout the book.
What makes them important is that not only do Markov chains model
many phenomena of interest, but also the lack of memory property makes
it possible to predict how a Markov chain may behave, and to compute
probabilities and expected values which quantify that behaviour. In this
book we shall present general techniques for the analysis of Markov chains,
together with many examples and applications. In this introduction we
shall discuss a few very simple examples and preview some of the questions
which the general theory will answer.

We shall consider chains both in discrete time

neZt={0,1,2,...}
and continuous time
te R =10,00).

The letters n,m, k will always denote integers, whereas ¢t and s will refer
to real numbers. Thus we write (X,,),>0 for a discrete-time process and
(X¢t)t>0 for a continuous-time process.
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Markov chains are often best described by diagrams, of which we now
give some simple examples:

(i) (Discrete time)

—

3

You move from state 1 to state 2 with probability 1. From state 3 you
move either to 1 or to 2 with equal probability 1/2, and from 2 you jump
to 3 with probability 1/3, otherwise stay at 2. We might have drawn a loop
from 2 to itself with label 2/3. But since the total probability on jumping
from 2 must equal 1, this does not convey any more information and we
prefer to leave the loops out.

(ii) (Continuous time)

When in state 0 you wait for a random time with exponential distribution
of parameter A\ € (0,00), then jump to 1. Thus the density function of the
waiting time 7T is given by

fr(t) = Xe™™ for ¢t > 0.
We write T ~ E()) for short.
(iii) (Continuous time)

A A A A
0 1 2 3 4

Here, when you get to 1 you do not stop but after another independent
exponential time of parameter A jump to 2, and so on. The resulting process
is called the Poisson process of rate .
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(iv) (Continuous time)

In state 3 you take two independent exponential times T} ~ FE(2) and
Ty ~ E(4); if Ty is the smaller you go to 1 after time 77, and if 75 is the
smaller you go to 2 after time T5. The rules for states 1 and 2 are as given
in examples (ii) and (iii). It is a simple matter to show that the time spent
in 3 is exponential of parameter 2 + 4 = 6, and that the probability of
jumping from 3 to 1 is 2/(2+4) = 1/3. The details are given later.

(v) (Discrete time)

We use this example to anticipate some of the ideas discussed in detail
in Chapter 1. The states may be partitioned into communicating classes,
namely {0}, {1,2,3} and {4,5,6}. Two of these classes are closed, meaning
that you cannot escape. The closed classes here are recurrent, meaning
that you return again and again to every state. The class {0} is transient.
The class {4,5,6} is periodic, but {1,2,3} is not. We shall show how to
establish the following facts by solving some simple linear equations. You
might like to try from first principles.

(a) Starting from 0, the probability of hitting 6 is 1/4.

(b) Starting from 1, the probability of hitting 3 is 1.

(c) Starting from 1, it takes on average three steps to hit 3.

)

(d) Starting from 1, the long-run proportion of time spent in 2 is 3/8.
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Let us write pgl) for the probability starting from 4 of being in state j after
n steps. Then we have:

(e) lim pfy) = 9/32;
() pgz) does not converge as n — oo;
() Jim pel =1/124
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Discrete-time Markov chains

This chapter is the foundation for all that follows. Discrete-time Markov
chains are defined and their behaviour is investigated. For better orien-
tation we now list the key theorems: these are Theorems 1.3.2 and 1.3.5
on hitting times, Theorem 1.4.2 on the strong Markov property, Theorem
1.5.3 characterizing recurrence and transience, Theorem 1.7.7 on invariant
distributions and positive recurrence. Theorem 1.8.3 on convergence to
equilibrium, Theorem 1.9.3 on reversibility, and Theorem 1.10.2 on long-
run averages. Once you understand these you will understand the basic
theory. Part of that understanding will come from familiarity with exam-
ples, so a large number are worked out in the text. Exercises at the end of
each section are an important part of the exposition.

1.1 Definition and basic properties

Let I be a countable set. Each ¢ € [ is called a state and [ is called the
state-space. We say that A = (\; : i € I) is a measure on I if 0 < \; < o0
for all 4 € I. If in addition the total mass ), ; A; equals 1, then we call
A a distribution. We work throughout with a probability space (2, F,P).
Recall that a random wvariable X with values in [ is a function X : Q — [I.
Suppose we set

A =P(X = i) = P({w: X(w) = i}).
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Then A defines a distribution, the distribution of X. We think of X as
modelling a random state which takes the value ¢ with probability A;. There
is a brief review of some basic facts about countable sets and probability
spaces in Chapter 6.

We say that a matrix P = (p;; : i,j € I) is stochastic if every row
(pij : j € I) is a distribution. There is a one-to-one correspondence between
stochastic matrices P and the sort of diagrams described in the Introduc-
tion. Here are two examples:

11—« a -
P:< 10<:>-02
B 1—B>
B
1
0 1 0 )
P= 0 1/2 1/2 2 1
/2 0 1/2
3 1 2
2

We shall now formalize the rules for a Markov chain by a definition in
terms of the corresponding matrix P. We say that (X,,),>0 is a Markov
chain with initial distribution \ and transition matriz P if

(i) Xo has distribution A;
(ii) for n > 0, conditional on X,, = ¢, X,,4; has distribution (p;; : j € I)
and is independent of Xg,... , X, _1.
More explicitly, these conditions state that, for n > 0 and 41,... ,i,11 € I,
(i) P(Xo =1i1) = A

(11) ]P(Xn+1 = in+1 ‘ Xo = il, . ,Xn = Zn) = pinin+1'

We say that (X,,),>0 is Markov(\, P) for short. If (X,)o<n<n is a finite
sequence of random variables satisfying (i) and (ii) for n = 0,... ,N — 1,
then we again say (X,)o<n<n is Markov(A, P).

It is in terms of properties (i) and (ii) that most real-world examples are
seen to be Markov chains. But mathematically the following result appears
to give a more comprehensive description, and it is the key to some later
calculations.

Theorem 1.1.1. A discrete-time random process (X,)o<n<n IS
Markov(\, P) if and only if for all iy, ... iy € I

P(Xo=1i1,X1 =1t2,... , XN =1IN) = i, PirisPisis - - - Pin _1in - (1.1)
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Proof. Suppose (X,,)o<n<n is Markov(A, P), then

P(Xo =11,X1 =i2,... , XN =in)
= IP)(XO - Zl)IP)(Xl - 'L’Q ‘ Xo = 21)
]P)(XN =N ‘ Xo = Ty .- 7XN—1 = 'iN—l)
= AiPivia - - - Pin _vin -
On the other hand, if (1.1) holds for N, then by summing both sides over

in € I and using } .y p;; = 1 we see that (1.1) holds for N —1 and, by
induction

P(Xo =1, X1 =d2,... , Xp =) = Ny Diris - - Pin_1in

for all n = 0,1,... ,N. In particular, P(Xg = i1) = \;; and, for n =
0,1,...,N —1,

P(Xpns1 =tny1 | Xo=i1,... , Xy = i)
—P(Xo = i1, s Xn = iny X1 = ins1)/P(Xo = i1, s X = in)

= pinin+1'
So (X,)o<n<n is Markov(A, P).

The next result reinforces the idea that Markov chains have no memory.
We write §; = (6;5 : j € I) for the unit mass at i, where

%:{1 ifi=j

0 otherwise.

Theorem 1.1.2 (Markov property). Let (X,),>0 be Markov(\, P).
Then, conditional on X,, =1, (Xy,4n)n>0 is Markov(d;, P) and is indepen-
dent of the random variables Xg, ... , X,,.

Proof. We have to show that for any event A determined by Xo,... , X,
we have

= 6ii7n Piima1 o Pimsn—19m+n ]P)(A | Xm = Z) (12)
then the result follows by Theorem 1.1.1. First consider the case of elemen-

tary events
A={Xg=1i1,..., Xm=1im}
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In that case we have to show
P(Xo =11, Xintn = tmin and i = i,,) /P(X,,, = 7)

= 6ii77z plm im+1 M ’pim+n7lim+n

X P(Xo =i1,..., X =i and i = ip,)/P(X = 1)

which is true by Theorem 1.1.1. In general, any event A determined by

Xo,...,X,, may be written as a countable disjoint union of elementary
events
(o @)
A= A
k=1

Then the desired identity (1.2) for A follows by summing up the corre-
sponding identities for Ag.

The remainder of this section addresses the following problem: what is
the probability that after n steps our Markov chain is in a given state? First
we shall see how the problem reduces to calculating entries in the nth power
of the transition matrix. Then we shall look at some examples where this
may be done explicitly.

We regard distributions and measures A as row vectors whose compo-
nents are indexed by I, just as P is a matrix whose entries are indexed by
I x I. When [ is finite we will often label the states 1,2,...,/N; then A
will be an N-vector and P an N x N-matrix. For these objects, matrix
multiplication is a familiar operation. We extend matrix multiplication to
the general case in the obvious way, defining a new measure AP and a new
matrix P2 by

(AP); = Xipijs  (PYik =Y _ pijpjk-
i€l jeI
We define P" similarly for any n. We agree that PV is the identity matrix
I, where (I);; = 0;;. The context will make it clear when I refers to the
state-space and when to the identity matrix. We write pg;l) = (Pm");; for
the (4,7) entry in P™.

In the case where A\; > 0 we shall write IP;(A) for the conditional prob-
ability P(A | Xo = i). By the Markov property at time m = 0, under P;,
(Xn)n>o0 is Markov(d;, P). So the behaviour of (X,,),>¢ under P; does not
depend on A.

Theorem 1.1.3. Let (X,,),>0 be Markov(\, P). Then, for all n,m > 0,
(i) P(Xn =j) = (AP");;
(i) Pi(Xn =) = PXnim = | X = i) = (.

ij
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Proof. (i) By Theorem 1.1.1

P(Xn=5)=> ... Y PXo=i1,..., Xn-1=in1,Xn =)

1€l in—1€l

= Z Z )\ilpilig e Diy 15 = ()\Pn)]

1€l in—1€l

(ii) By the Markov property, conditional on X,,, = 4, (Xy,4n)n>0 is Markov
(6;, P), so we just take A\ = §; in (i).

(n) iy . .
i the n-step transition probability from i
to j. The following examples give some methods for calculating pg;l).

In light of this theorem we call p

Example 1.1.4

The most general two-state chain has transition matrix of the form

(11—« o
P‘( 5 1_5)

and is represented by the following diagram:

1-<:>o2

g

We exploit the relation P*"t! = PP to write
P =pl B8+ (1 - ).

We also know that pgﬁl) + pgg) = P;(X,, =1o0r2) =1, so by eliminating
(n) (n).

P15’ We get a recurrence relation for pj;’:
n+1 n 0
it = —a-ppi + 8. ) =1.
This has a unique solution (see Section 1.11):

I6] «
n + l—a—-p)" fora+p5>0
pgl): a+ Oc-l-ﬁ( )

1 fora+ 3 =0.
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Example 1.1.5 (Virus mutation)

Suppose a virus can exist in N different strains and in each generation
either stays the same, or with probability @ mutates to another strain,
which is chosen at random. What is the probability that the strain in the
nth generation is the same as that in the Oth?

We could model this process as an N-state chain, with N x N transition
matrix P given by

pi=1—0a, pj=af(N-1) fori#j.

Then the answer we want would be found by computing pg?). In fact, in
this example there is a much simpler approach, which relies on exploiting

the symmetry present in the mutation rules.

At any time a transition is made from the initial state to another with
probability «, and a transition from another state to the initial state with
probability a/(N — 1). Thus we have a two-state chain with diagram

@
initial Q‘ other
a/(N —1)

and by putting § = /(N — 1) in Example 1.1.4 we find that the desired

probability is
1 (4 L\ (,_ oN "
N N N-1) °

Beware that in examples having less symmetry, this sort of lumping together
of states may not produce a Markov chain.

Example 1.1.6

Consider the three-state chain with diagram

1

=
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and transition matrix

P =

= O O
[enl SR
N =N~ O

The problem is to find a general formula for pg?).

First we compute the eigenvalues of P by writing down its characteristic
equation

O=det(z—P)=z(z— 1) -1 =1—-1)42?+1).

The eigenvalues are 1,i/2, —i/2 and from this we deduce that pgq) has the

form n i
n 7 7
pgl):a+b<2> +c<—2>

for some constants a, b and c. (The justification comes from linear algebra:
having distinct eigenvalues, P is diagonalizable, that is, for some invertible
matrix U we have

1 0 0
p=Ulo0 i2 o0 |U!
0 0 —i/2
and hence
1 0 0

0 U1
0 0 (=i/2"

which forces p&?) to have the form claimed.) The answer we want is real

. n 1 n ) 1 n
<:l:;> = <2> etinT/2 — <2> (cos n27r 4 isin n27r)

so it makes sense to rewrite pgq) in the form

) — o+ ! n{ﬂcosmr—k sinmr}
bii” = 9 9 Y 9

for constants «, 0 and . The first few values of pg?)

down, so we get equations to solve for «, § and ~:

are easy to write

1:pg2):a+ﬂ
0=pi) =a+}y

2
O:pg1):a_4115
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soa=1/5=4/5v=-2/5and

(n)_1+ 1\" 4cosmr—2sinmr
P =57 o) 5% 2 5™ 2 [~

More generally, the following method may in principle be used to find a

(n)

ij

(i) Compute the eigenvalues A1, ..., Ay of P by solving the character-
istic equation.

formula for p;.’ for any M-state chain and any states ¢ and j.

(ii) If the eigenvalues are distinct then pg.l) has the form

P = a4 an Ny

for some constants aq,... ,ap (depending on i and j). If an eigen-
value A is repeated (once, say) then the general form includes the
term (an + b)A\™.

(iii) As roots of a polynomial with real coefficients, complex eigenvalues
will come in conjugate pairs and these are best written using sine
and cosine, as in the example.

Exercises

1.1.1 Let By, Bs, ... be disjoint events with | J; -, B, = Q. Show that if A
is another event and P(A|B,,) = p for all n then P(A) = p.

Deduce that if X and Y are discrete random variables then the following
are equivalent:

(a) X and Y are independent;

(b) the conditional distribution of X given Y = y is independent of y.

1.1.2 Suppose that (X,,)p>0 is Markov (A, P). If Y,, = Xj,, show that
(Y)n>o is Markov (A, P*).

1.1.3 Let X be a random variable with values in a countable set I. Let
Y1,Y5,... be a sequence of independent random variables, uniformly dis-
tributed on [0, 1]. Suppose we are given a function

G:1x[0,1] -1
and define inductively
Xn+1 = G(Xna Yn—l—l)-

Show that (X,,)n>0 is a Markov chain and express its transition matrix P
in terms of G. Can all Markov chains be realized in this way? How would
you simulate a Markov chain using a computer?
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Suppose now that Zy,Z;,... are independent, identically distributed
random variables such that Z; = 1 with probability p and Z; = 0 with
probability 1 —p. Set Sy =0, S,, = Z1 + ...+ Z,. In each of the following
cases determine whether (X,,),>¢ is a Markov chain:

(a) X,, = Zp, (b) X,, = Sy,
() Xn =50+ ...+ 5, (d)X,, = (Sn, S + ...+ Sn).

In the cases where (X,,),>0 is a Markov chain find its state-space and
transition matrix, and in the cases where it is not a Markov chain give an
example where P(X, 11 =i|X, = j, X,,—1 = k) is not independent of k.

1.1.4 A flea hops about at random on the vertices of a triangle, with all
jumps equally likely. Find the probability that after n hops the flea is back
where it started.

A second flea also hops about on the vertices of a triangle, but this flea is
twice as likely to jump clockwise as anticlockwise. What is the probability
that after n hops this second flea is back where it started? [Recall that
eTm/6 = \/3/2 £ /2]

1.1.5 A die is ‘fixed’ so that each time it is rolled the score cannot be the
same as the preceding score, all other scores having probability 1/5. If the
first score is 6, what is the probability p that the nth score is 67 What is
the probability that the nth score is 17

Suppose now that a new die is produced which cannot score one greater
(mod 6) than the preceding score, all other scores having equal probability.
By considering the relationship between the two dice find the value of p for
the new die.

1.1.6 An octopus is trained to choose object A from a pair of objects A, B
by being given repeated trials in which it is shown both and is rewarded
with food if it chooses A. The octopus may be in one of three states of mind:
in state 1 it cannot remember which object is rewarded and is equally likely
to choose either; in state 2 it remembers and chooses A but may forget
again; in state 3 it remembers and chooses A and never forgets. After each
trial it may change its state of mind according to the transition matrix

11
State 1 > o 0

11 5
State 2 5 12 19
State3 0 O 1

It is in state 1 before the first trial. What is the probablity that it is
in state 1 just before the (n+1)th trial 7 What is the probability P,1(A)
that it chooses A on the (n + 1)th trial ?
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Someone suggests that the record of successive choices (a sequence of As
and Bs) might arise from a two-state Markov chain with constant transition
probabilities. Discuss, with reference to the value of P, 1(A) that you have
found, whether this is possible.

1.1.7 Let (X,,)n>0 be a Markov chain on {1, 2,3} with transition matrix

0 1 0
P={(0 2/3 1/3
p 1—p O

Calculate P(X,, = 1|/Xy = 1) in each of the following cases: (a) p = 1/16,
(b) p=1/6, (c) p=1/12.

1.2 Class structure

It is sometimes possible to break a Markov chain into smaller pieces, each
of which is relatively easy to understand, and which together give an un-
derstanding of the whole. This is done by identifying the communicating
classes of the chain.

We say that i leads to j and write i — j if
P;(X,, = j for some n > 0) > 0.

We say i communicates with j and write i < j if both i — j and j — 3.

Theorem 1.2.1. For distinct states i and j the following are equivalent:
(i) i —J;
(ii) PiyisPigis - - - Pin 14, > 0 for some states iq,1a,... i, with iy =i and
in = J;
(iii) p%ﬂ > 0 for some n > 0.

Proof. Observe that

P < Py(X, = j for some n > 0) < 3 0"

n=0

which proves the equivalence of (i) and (iii). Also

p,E;L) = Z pii2pi2i2 .. 'pin,flj

12,00 yin —1

so that (ii) and (iii) are equivalent.
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It is clear from (ii) that ¢ — j and j — k imply ¢ — k. Also i — i for
any state i. So <« satisfies the conditions for an equivalence relation on I,
and thus partitions I into communicating classes. We say that a class C' is
closed if

1€C,i—j imply j € C.

Thus a closed class is one from which there is no escape. A state i is
absorbing if {i} is a closed class. The smaller pieces referred to above are
these communicating classes. A chain or transition matrix P where [ is a
single class is called #rreducible.

As the following example makes clear, when one can draw the diagram,
the class structure of a chain is very easy to find.

Example 1.2.2

Find the communicating classes associated to the stochastic matrix

y 5 00 00
0 01 0 0 O
P 3 00 % 20
000 5 5 0
0 000 01
0 000 1 O
The solution is obvious from the diagram
1 4
3
2 5 6

the classes being {1,2,3}, {4} and {5,6}, with only {5,6} being closed.

Exercises

1.2.1 Identify the communicating classes of the following transition matrix:

>

Il
= O O O
Ok~ ONvE O
OhrRrE—= O O
OkrON= O
N R = O ON-

Which classes are closed?
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1.2.2 Show that every transition matrix on a finite state-space has at least
one closed communicating class. Find an example of a transition matrix
with no closed communicating class.

1.3 Hitting times and absorption probabilities

Let (X, )n>0 be a Markov chain with transition matrix P. The hitting time
of a subset A of I is the random variable H* : Q — {0,1,2,...} U {0}
given by

HAw) =inf{n >0: X, (w) € A}

where we agree that the infimum of the empty set ) is co. The probability
starting from 4 that (X,,),>0 ever hits A is then

it = P;(HA < o).

(2

When A is a closed class, hf‘ is called the absorption probability. The mean
time taken for (X,,),>0 to reach A is given by

kA =Ei(HY) = ) nP(H* = n)+ coP(H* = c0).
n<oo

We shall often write less formally

hit =P;(hit A), Kk = E;(time to hit A).

(2

Remarkably, these quantities can be calculated explicitly by means of cer-
tain linear equations associated with the transition matrix P. Before we
give the general theory, here is a simple example.

Example 1.3.1

Consider the chain with the following diagram:

N =
—

Starting from 2, what is the probability of absorption in 47 How long does
it take until the chain is absorbed in 1 or 47

Introduce
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Clearly, hy =0, hy = 1 and k; = k4 = 0. Suppose now that we start at 2,
and consider the situation after making one step. With probability 1/2 we
jump to 1 and with probability 1/2 we jump to 3. So

h225h1—|—5h3, k‘2:1+%k‘1+;k‘3.

The 1 appears in the second formula because we count the time for the first
step. Similarly,

h3:;h2—|—éh4, k‘3:1+%k‘2+5k‘4.
Hence

hy = Shy = 3(3ha + 3),
ko =1+ ks=1+1(1+ 1ko).

So, starting from 2, the probability of hitting 4 is 1/3 and the mean time to
absorption is 2. Note that in writing down the first equations for hs and ko
we made implicit use of the Markov property, in assuming that the chain
begins afresh from its new position after the first jump. Here is a general
result for hitting probabilities.

Theorem 1.3.2. The vector of hitting probabilities h* = (h{* i € I) is
the minimal non-negative solution to the system of linear equations

ht =1 foric A
(1.3)

h;A = Zjelpijh? for i Q A.

(Minimality means that if x = (z; : i € I) is another solution with x; > 0
for all i, then x; > h; for all i.)

Proof. First we show that h* satisfies (1.3). If Xo =i € A, then HA = 0,
so h! =1. If Xg =4 ¢ A, then H* > 1, so by the Markov property

Py(H* < oo | Xy =j) =P;(H* < 00) = h

and
Wi =Pi(H* < o00) =) Pi(H" < 00, X; =)
jeI

:ZIP’i(HA<oo]X1:j) (X1=14) mehA
jel jel
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Suppose now that = (z; : i € I) is any solution to (1.3). Then hf! = z; = 1
for i € A. Suppose i € A, then

Tp = Zpijxj = Zpij + Zl’ijxj-

jel JjEA JE€A
Substitute for z; to obtain

T; = Zpij + Zpij <Z DPjk + Zij%)

jeA jgA kEA kgA

= ]P)i(Xl S A) + ]P)i(Xl € A,Xz c A) + Z Zpijpjkxk.
JEAkZA

By repeated substitution for x in the final term we obtain after n steps

LL‘Z':]PJZ'(Xl EA)++PZ(X1 gA, an—l gA,XnGA)

+ : : ct : : pl]lpjlj2 "'pjrb—ljrbxj1L'

jl €A jn gA

Now if z is non-negative, so is the last term on the right, and the remaining
terms sum to P;(H4 < n). So z; > P;(H* < n) for all n and then

z; > lim Py(HA <n) =Py(H* < 00) = h;.

n—o0

Example 1.3.1 (continued)

The system of linear equations (1.3) for h = h{4} are given here by

hy =1,
ho = %h1 + %h?n hs = éhz + %h4

so that
hy = yhi+ 5(5ha + )
and
hy = 3+ 3h1, hs =5 + yha.
The value of h; is not determined by the system (1.3), but the minimality

condition now makes us take hy = 0, so we recover hy = 1/3 as before. Of
course, the extra boundary condition h; = 0 was obvious from the beginning
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so we built it into our system of equations and did not have to worry about
minimal non-negative solutions.

In cases where the state-space is infinite it may not be possible to write
down a corresponding extra boundary condition. Then, as we shall see in
the next examples, the minimality condition is essential.

Example 1.3.3 (Gamblers’ ruin)
Consider the Markov chain with diagram

q p q9 p q p

< <

0 1 i i+l

where 0 < p =1 — ¢ < 1. The transition probabilities are

poo = 1,

Pii-1=¢, Piit1=p fori=12....
Imagine that you enter a casino with a fortune of £7 and gamble, £1 at a
time, with probability p of doubling your stake and probability ¢ of losing

it. The resources of the casino are regarded as infinite, so there is no upper
limit to your fortune. But what is the probability that you leave broke?

Set h; = IP;(hit 0), then A is the minimal non-negative solution to

ho =1,
h; =ph;i 1 +qh;_1, fori=1,2,....

If p #£ ¢ this recurrence relation has a general solution

hi=A+B<q> .
p

(See Section 1.11.) If p < g, which is the case in most successful casinos,
then the restriction 0 < h; < 1 forces B =0, so h; = 1 for all i. If p > ¢,
then since hg = 1 we get a family of solutions

() l-G))

for a non-negative solution we must have A > 0, so the minimal non-
negative solution is h; = (¢/p)’. Finally, if p = ¢ the recurrence relation
has a general solution

hi=A+ Bi
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and again the restriction 0 < h; < 1 forces B = 0, so h; = 1 for all i.
Thus, even if you find a fair casino, you are certain to end up broke. This
apparent paradox is called gamblers’ ruin.

Example 1.3.4 (Birth-and-death chain)

Consider the Markov chain with diagram

q1 p1 q; Pi Qi+l Pi+1
0 1 i i+1
where, for s = 1,2,..., we have 0 < p; =1 — ¢; < 1. As in the preceding

example, 0 is an absorbing state and we wish to calculate the absorption
probability starting from ¢. But here we allow p; and ¢; to depend on i.

Such a chain may serve as a model for the size of a population, recorded
each time it changes, p; being the probability that we get a birth before
a death in a population of size i. Then h; = P;(hit 0) is the extinction
probability starting from 1.

We write down the usual system of equations

ho =1,
hi = pihiv1 + qhi—1, fori=1,2,....

This recurrence relation has variable coefficients so the usual technique fails.
But consider u; = h;—1 — h;, then p;u;+1 = q;u;, so

_<Qz’> _<QiqZ‘—1~-Q1> .
Uit1 = Uy = ur = i1
Di PiPi—-1---P1

where the final equality defines ;. Then
u1+...+ui:h0—hi

SO
hi=1—A(yo+...+7i-1)

where A = u; and 79 = 1. At this point A remains to be determined. In
the case Z;‘io ~; = 00, the restriction 0 < h; < 1 forces A=0and h; =1
for all . But if >~ 7; < oo then we can take A > 0 so long as

1—A(yo+...+7-1) >0 foralli.
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Thus the minimal non-negative solution occurs when A = (Z;)io 'yi) ~!and

then - -
hi=Y_ ’Yj/ > -
Jj=t 7=0

In this case, for ¢ = 1,2,..., we have h; < 1, so the population survives
with positive probability.

Here is the general result on mean hitting times. Recall that klA =
E;(H#), where H” is the first time (X,,),>0 hits A. We use the notation

1p for the indicator function of B, so, for example, 1x,—; is the random
variable equal to 1 if X; = j and equal to 0 otherwise.

Theorem 1.3.5. The vector of mean hitting times k4 = (k% : i € I) is

the minimal non-negative solution to the system of linear equations
EA =0 forie A
{ ! (1.4)

k=143, apijky forid A.
Proof. First we show that k4 satisfies (1.4). If Xo =i € A, then HA = 0,
SO k:f =0.If Xg=i¢ A, then H* > 1, so, by the Markov property,
Ei(H" | X1 =j) =1+ E;(H%)
and
kP =E(HY) =Y Ei(H'1x,-)
Jjel

jel J¢A

Suppose now that y = (y; : i € I) is any solution to (1.4). Then k#* = y; =0
fori € A. If i ¢ A, then

yi =1+ Zpijyj

JEA
=1+ pi <1 + ijk?/k>
jgA kgA

=P(H* > 1) +Pi(H* 2 2)+ > > pijpjnti.
JEA kZA

By repeated substitution for y in the final term we obtain after n steps

A A
yZ :]P)l(H 2 1) +]P) H > n Z Z pz]lpJIJQ "'pjn—ljnyjn'
J1gA  gngA
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So, if y is non-negative,

yi > Py(HA > 1) +... +P;(H* > n)

and, letting n — oo,

yi > Y Pi(H" >n) =E(H") = k.

n=1

Exercises

1.3.1 Prove the claims (a), (b) and (¢) made in example (v) of the Intro-
duction.

1.3.2 A gambler has £2 and needs to increase it to £10 in a hurry. He
can play a game with the following rules: a fair coin is tossed; if a player
bets on the right side, he wins a sum equal to his stake, and his stake is
returned; otherwise he loses his stake. The gambler decides to use a bold
strategy in which he stakes all his money if he has £5 or less, and otherwise
stakes just enough to increase his capital, if he wins, to £10.

Let Xy = 2 and let X,, be his capital after n throws. Prove that the
gambler will achieve his aim with probability 1/5.

What is the expected number of tosses until the gambler either achieves

his aim or loses his capital?

1.3.3 A simple game of ‘snakes and ladders’ is played on a board of nine
squares.

FINISH 9
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At each turn a player tosses a fair coin and advances one or two places
according to whether the coin lands heads or tails. If you land at the foot
of a ladder you climb to the top, but if you land at the head of a snake you
slide down to the tail. How many turns on average does it take to complete
the game?

What is the probability that a player who has reached the middle square

will complete the game without slipping back to square 17

1.3.4 Let (X,,)n>0 be a Markov chain on {0, 1, ...} with transition proba-
bilities given by

i+1\?
por =1, piit1+tpiic1=1, piiy1= < ; ) Diji—1, ©>1.
Show that if Xy = 0 then the probability that X,, > 1 for all n > 1 is 6/7.

1.4 Strong Markov property

In Section 1.1 we proved the Markov property. This says that for each time
m, conditional on X,, = ¢, the process after time m begins afresh from
i. Suppose, instead of conditioning on X, = i, we simply waited for the
process to hit state ¢, at some random time H. What can one say about the
process after time H? What if we replaced H by a more general random
time, for example H — 17 In this section we shall identify a class of random
times at which a version of the Markov property does hold. This class will
include H but not H — 1; after all, the process after time H — 1 jumps
straight to 4, so it does not simply begin afresh.

A random variable T': Q — {0,1,2,... } U{oco} is called a stopping time
if the event {T' = n} depends only on Xy, Xy,... ,X, forn =0,1,2,....
Intuitively, by watching the process, you know at the time when 7" occurs.
If asked to stop at T', you know when to stop.

Examples 1.4.1
(a) The first passage time
T; =inf{n>1: X, =j}
is a stopping time because
(Ty=n} ={X1 £ .., X1 # J, Xn = j}.
(b) The first hitting time H* of Section 1.3 is a stopping time because

{(HA=n}={Xo € A,... , X, 1 ¢ A X, c A}
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(c) The last exit time
LA =sup{n>0:X, c A}

is not in general a stopping time because the event {L* = n} depends on
whether (X4 )m>1 visits A or not.

We shall show that the Markov property holds at stopping times. The
crucial point is that, if T" is a stopping time and B C €2 is determined by
Xo,X1,...,Xrp, then BN {T = m} is determined by Xg, X1,... ,X,,, for
allm=20,1,2,....

Theorem 1.4.2 (Strong Markov property). Let (X,),>0 be
Markov(\, P) and let T be a stopping time of (X,,)n>0. Then, conditional
onT < oo and X7 =14, (X74n)n>0 is Markov(é;, P) and independent of
Xo, X1,...,X7.

Proof. If B is an event determined by Xy, X1,... , X, then BN {T = m}
is determined by Xg, X1,... , X, so, by the Markov property at time m

P{ X7 = jo, Xr41 =J1,- - s Xrgn =Gt N BNO{T =m}N{Xr =1})
= ]Pi(Xo :jo,Xl :jl,... ,Xn :jn)]P)(Bﬂ {T = m} N {XT = ’L})

where we have used the condition T' = m to replace m by T'. Now sum over
m =0,1,2,... and divide by P(T' < oo, X7 = i) to obtain

P({XT:jo,XT+1 :jl,... 7XT+TL :jn}ﬁB|T<OO,XT :’L)
:Pz(XO :jo,Xl :jl,... ,Xn :jn)P(B ‘ T < OO,XT :Z)

The following example uses the strong Markov property to get more
information on the hitting times of the chain considered in Example 1.3.3.

Example 1.4.3

Consider the Markov chain (X,,),>¢ with diagram

q p q9 p qg p
0 1 1 1+ 1
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where 0 < p=1—¢g < 1. We know from Example 1.3.3 the probability of
hitting 0 starting from 1. Here we obtain the complete distribution of the
time to hit 0 starting from 1 in terms of its probability generating function.
Set
H; =inf{n >0: X, =j}
and, for 0 < s <1
0(s) =Ex(s™) = 3 8"Pa(Ho =n).
n<oo

Suppose we start at 2. Apply the strong Markov property at H; to see
that under Py, conditional on H; < oo, we have Hy = Hy + Ho, where
Hy, the time taken after Hq to get to 0, is independent of H; and has the
(unconditioned) distribution of H;. So

EQ(SHO) = EQ(SHI ‘ H, < OO)EQ(SHO ‘ H, < OO)]PQ(Hl < OO)
= E2(8H11H1<00)E2(8H0 ’ H1 < OO)
= Eo(s™)” = ¢(s5)*.
Then, by the Markov property at time 1, conditional on X; = 2, we have
Hy =1+ Hy, where Hg, the time taken after time 1 to get to 0, has the
same distribution as Hy does under P5. So
¢(s) = E1(s"10) = pE1 (s | X1 = 2) + qE1 (s™ | X1 = 0)
= pEi ("0 | X1 = 2) + qEi(s | X1 =0)
= psEa(s™) + ¢s
= psd(s)® + gs.
Thus ¢ = ¢(s) satisfies
ps¢® —p+qs=0 (1.5)
and
¢ = (1+ /1 —4pgs®)/2ps.

Since ¢(0) < 1 and ¢ is continuous we are forced to take the negative root
at s = 0 and stick with it for all 0 < s < 1.

To recover the distribution of Hy we expand the square-root as a power
series:

B(s) = 21133{1 — <1 + 2(—4pgs®) + L(=1)(—4dpgs®)? /2! + ... >}

:qs+pq233+...
= SPl(HO = 1) —|—82P1(H0 = 2) +83P1(H0 = 3) 4+ ...
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The first few probabilities Py (Hy = 1),P1(Hy = 2),... are readily checked
from first principles.

On letting s T 1 we have ¢(s) — Py (Hy < 00), so

1—¢1—4pq_{1 if p<gq

Pi(Hp < o0) = .
( ) 2p q/p ifp>q.

(Remember that ¢ = 1 — p, so
V1—dpg = /1 —dp+4p> = [1 = 2p| = |2¢ — 1].)
We can also find the mean hitting time using
Ei(Ho) = lim ¢/(s).
sT1

It is only worth considering the case p < ¢, where the mean hitting time
has a chance of being finite. Differentiate (1.5) to obtain

2pspg’ + pd® — ¢’ +q =10

SO

¢'(s) = (pp(s)? + )/ (1 —2ps(s)) — 1/(1 =2p) =1/(¢ —p) assT 1.
See Example 5.1.1 for a connection with branching processes.

Example 1.4.4

We now consider an application of the strong Markov property to a Markov
chain (X,,),>0 observed only at certain times. In the first instance suppose
that J is some subset of the state-space I and that we observe the chain
only when it takes values in J. The resulting process (Y,,)m>0 may be
obtained formally by setting Y,, = X7, where

To=inf{n>0: X, € J}
and, form =0,1,2,...
Ty1 =inf{n >1T,, : X,, € J}.

Let us assume that P(7,, < oco) = 1 for all m. For each m we can check
easily that T}, the time of the mth visit to J, is a stopping time. So the
strong Markov property applies to show, for i1,... ,imy,11 € J, that
P(Yiit1 =tms1 | Yo=141,... , Y = im)
=P( X7, =tms1 | X1y =01, , X1, =)
=P, (X1, =im+1) =i 1a
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where, for i,j € J

and where, for j € J, the vector (hf i € I) is the minimal non-negative
solution to

hg =pi; + Zpikhi. (1.6)
kgJ
Thus (Y,,,)m>0 is a Markov chain on J with transition matrix P.

A second example of a similar type arises if we observe the original chain
(Xn)n>o0 only when it moves. The resulting process (Z,,)m>0 is given by
Zm = Xg where Sg =0 and for m =0,1,2,...

m

Sm+1 = 1nf{n Z Sm : Xn 75 XS }

m

Let us assume there are no absorbing states. Again the random times S,
for m > 0 are stopping times and, by the strong Markov property

IED(Zm—‘,-l = lmt1 ‘ 20 =11, yLm = 'Lm)
=P(Xs, 1 = tmt1 | X5y = i1, Xg,, = im)

= ]Pim (XSI = im+1) = ﬁinz Tm 41
where p; = 0 and, for i # j

pij = pij/ me

ki
Thus (Z,,)m>0 is a Markov chain on I with transition matrix P.

Exercises

1.4.1 Let Y7,Y5,... be independent identically distributed random vari-
ables with
P(Yl = 1) :P(Yl = —1) = 1/2 and set Xo = 1, Xn :X0—|—Y1++Yn
for n > 1. Define

Hy=inf{n >0: X,, =0}.

Find the probability generating function ¢(s) = E(s°).
Suppose the distribution of Y7,Ys,... is changed to P(Y; = 2) = 1/2,
P(Y; = —1) = 1/2. Show that ¢ now satisfies

5¢° —2¢+5=0.

1.4.2 Deduce carefully from Theorem 1.3.2 the claim made at (1.6).
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1.5 Recurrence and transience

Let (X,,)n>0 be a Markov chain with transition matrix P. We say that a
state 7 is recurrent if

P;(X,, = ¢ for infinitely many n) = 1.
We say that ¢ is transient if
P;(X,, = ¢ for infinitely many n) = 0.

Thus a recurrent state is one to which you keep coming back and a transient
state is one which you eventually leave for ever. We shall show that every
state is either recurrent or transient.

Recall that the first passage time to state i is the random variable T;
defined by
Ti(w)=inf{n >1: X, (w) =i}

where inf ) = co. We now define inductively the rth passage time T, Z-(T) to
state ¢ by
T%w) =0, TV(w)=Tiw)

and, for r =0,1,2,...,
T (W) = inf{n > T\ (W) + 1 : X, (w) = i}.
The length of the rth excursion to ¢ is then

S(T) B 111(7') _ Ti(T—l) if Ti(T—l) < 00
‘ 0 otherwise.

The following diagram illustrates these definitions:

Xn
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Our analysis of recurrence and transience will rest on finding the joint
distribution of these excursion lengths.

Lemma 1.5.1. For r = 2,3,..., conditional on 7Y < 00, Si(T) is inde-

(2
pendent of {X,, : m < Ti(r_l)} and

P(S") =n | TU™Y < 00) = Py(T; = n).

Proof. Apply the strong Markov property at the stopping time T" = Ti(T_l).
It is automatic that X7 = i on T < oo. So, conditional on T < o0,
(X14n)n>0 is Markov(d;, P) and independent of Xy, X1,..., Xp. But

S =inf{n>1: Xpyn =i},

1
SO Si(r) is the first passage time of (X7, )n>0 to state i.

Recall that the indicator function 1{ X1=4} is the random variable equal
to 1if X7 = j and 0 otherwise. Let us introduce the number of visits V; to
i, which may be written in terms of indicator functions as

Vi= Z Tyx, =i}
n=0

and note that
E(V:) =E:i > lix,—ip = > Eillgx,—iy) = > Pi(X, =1i) = ZPE?)
n=0 n=0 n=0 n=0

Also, we can compute the distribution of V; under P; in terms of the return
probability

Lemma 1.5.2. Forr =0,1,2,..., we have P;(V; >r) = f].

Proof. Observe that if Xy =4 then {V; > r} = {Ti(r) < 00}. When r =0
the result is true. Suppose inductively that it is true for r, then
Pi(V; > r41) = Py(T" ™ < o0)
= ]P’Z-(TZ-(T) < oo and Si(TH) < 00)
=P;(S" ™ < 00 | T < 00)PH (T < o0)
=fifl = £

by Lemma 1.5.1, so by induction the result is true for all .
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Recall that one can compute the expectation of a non-negative integer-
valued random variable as follows:

iP(V>r):i i P(V =

r=0v=r+1
= ZEP(V =v) = ZUP(V =v) =E(V).
v=1r=0 v=1

The next theorem is the means by which we establish recurrence or
transience for a given state. Note that it provides two criteria for this, one
in terms of the return probability, the other in terms of the n-step transition
probabilities. Both are useful.

Theorem 1.5.3. The following dichotomy holds:
(i) if P;(T; < o0) =1, then i is recurrent and y . Opgf) = 00;
(ii) if P;(T; < 00) < 1, then i is transient and - Opgf) < 0.

In particular, every state is either transient or recurrent.
Proof. 1f P;(T; < oo) = 1, then, by Lemma 1.5.2,
P;(V; =00) = lim Py(V; >r) =1

T—00

S0 % is recurrent and
S =B =0

On the other hand, if f; = P;(T; < o) < 1, then by Lemma 1.5.2

Zp“” Z]P’ Vi > 1) Zfr_1—fz

so P;(V; = 0o) = 0 and i is transient.

From this theorem we can go on to solve completely the problem of
recurrence or transience for Markov chains with finite state-space. Some
cases of infinite state-space are dealt with in the following chapter. First
we show that recurrence and transience are class properties.

Theorem 1.5.4. Let C' be a communicating class. Then either all states
in C are transient or all are recurrent.

Proof. Take any pair of states 7,7 € C and suppose that ¢ is transient.
There exist n,m > 0 with pgl) > 0 and pgzn) > 0, and, for all » > 0

pu T > i) plpl)
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SO
o]

) LN, ()
Pii = om) 2P
r=0 ij Pji~ r=0

< 00

by Theorem 1.5.3. Hence j is also transient by Theorem 1.5.3.

In the light of this theorem it is natural to speak of a recurrent or transient
class.

Theorem 1.5.5. Every recurrent class is closed.

Proof. Let C be a class which is not closed. Then there exist i € C, j & C
and m > 1 with

Pi( X, = 7) > 0.

Since we have
P;({ X, = j} N {X,, =i for infinitely many n}) =0
this implies that
P;(X,, = ¢ for infinitely many n) < 1

S0 1 is not recurrent, and so neither is C.
Theorem 1.5.6. Every finite closed class is recurrent.

Proof. Suppose C' is closed and finite and that (X,,),>o starts in C. Then
for some i € C' we have

0 < P(X,, = ¢ for infinitely many n)
= P(X,, =i for some n)P;(X,, = for infinitely many n)

by the strong Markov property. This shows that ¢ is not transient, so C' is
recurrent by Theorems 1.5.3 and 1.5.4.

It is easy to spot closed classes, so the transience or recurrence of finite
classes is easy to determine. For example, the only recurrent class in Ex-
ample 1.2.2 is {5, 6}, the others being transient. On the other hand, infinite
closed classes may be transient: see Examples 1.3.3 and 1.6.3.

We shall need the following result in Section 1.8. Remember that irre-
ducibility means that the chain can get from any state to any other, with
positive probability.
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Theorem 1.5.7. Suppose P is irreducible and recurrent. Then for all
j € I we have P(T; < o0) = 1.

Proof. By the Markov property we have

P(T; < o0) Z]P’Xo—z i(T; < 00)

el

so it suffices to show P;(7; < oo) =1 for all i € I. Choose m with p( ™ > 0.
By Theorem 1.5.3, we have

1 =P;(X, = j for infinitely many n)
=P;(X,, = j for some n > m+ 1)

= ZPj(Xn = j for some n >m+1|X,, = k)P;(X,, =k)
kel

= D PulTy < ooy
kel

where the final equality uses the Markov property. But ), ; pg.:f) =150
we must have P;(7T; < c0) = 1.

Exercises

1.5.1 In Exercise 1.2.1, which states are recurrent and which are transient?

1.5.2 Show that, for the Markov chain (X,,),>¢ in Exercise 1.3.4 we have
P(X, occasn—o0)=1.

Suppose, instead, the transition probabilities satisfy

i+1\“
DPiji+1 = i Piji—1-

For each a € (0,00) find the value of P(X,, — oo as n — o).

1.5.3 (First passage decomposition). Denote by T the first passage
time to state j and set

£ =BT = ).
Justify the identity

) = Z FBprR forn > 1
k=1
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and deduce that
Pij(s) = 0ij + Fj(s)Pj;(s)

where
Zp(") n’ Zf(") n

Hence show that P;(7; < oo) =1 if and only if

Z p(n)

without using Theorem 1.5.3.

1.5.4 A random sequence of non-negative integers (F,),>o is obtained by
setting Fp = 0 and F; = 1 and, once Fy,... , F, are known, taking F,, .1 to
be either the sum or the difference of F,,_; and F},, each with probability
1/2. Is (F},)n>0 a Markov chain?

By considering the Markov chain X,, = (F,_1, F},), find the probability
that (F},)n>0 reaches 3 before first returning to 0.

Draw enough of the flow diagram for (X,),>¢ to establish a general
pattern. Hence, using the strong Markov property, show that the hitting
probability for (1,1), starting from (1,2), is (3 — v/5)/2.

Deduce that (X,,)n>0 is transient. Show that, moreover, with probability
1, F,, - 00 as n — oo.

1.6 Recurrence and transience of random walks

In the last section we showed that recurrence was a class property, that all
recurrent classes were closed and that all finite closed classes were recurrent.
So the only chains for which the question of recurrence remains interesting
are irreducible with infinite state-space. Here we shall study some simple
and fundamental examples of this type, making use of the following criterion
for recurrence from Theorem 1.5.3: a state i is recurrent if and only if

Do opgl) = 0.
Example 1.6.1 (Simple random walk on Z)

The simple random walk on Z has diagram




30 1. Discrete-time Markov chains

where 0 < p=1— ¢ < 1. Suppose we start at 0. It is clear that we cannot
return to 0 after an odd number of steps, so pé%nH) = 0 for all n. Any
given sequence of steps of length 2n from 0 to 0 occurs with probability
p"q™, there being n steps up and n steps down, and the number of such

sequences is the number of ways of choosing the n steps up from 2n. Thus

p(2n) — 2n pnqn
00 n .

Stirling’s formula provides a good approximation to n! for large n: it is
known that
n! ~ v2rn(n/e)" as n — 0o

where a,, ~ b, means a,, /b, — 1. For a proof see W. Feller, An Introduction
to Probability Theory and its Applications, Vol I (Wiley, New York, 3rd
edition, 1968). At the end of this chapter we reproduce the argument used
by Feller to show that

n! ~ Ay/n(n/e)" as n — 0o

for some A € [1,00). The additional work needed to show A = /27 is
omitted, as this fact is unnecessary to our applications.

For the n-step transition probabilities we obtain

as n — OQ.

oy (2R), o (4pg)"
i = En!))g (pg)"™ ~ 14(1\]/)(53/2

In the symmetric case p = g = 1/2, so 4pqg = 1; then for some N and all

n > N we have
(2n) >
Poo = 2A\/n

SO
@en) o 1 L
S Y
n=N n=N

which shows that the random walk is recurrent. On the other hand, if p # ¢
then 4pg = r < 1, so by a similar argument, for some N

o 1 o0
Z p(()ﬁ) < A Z r" < 0o
n=N n=N

showing that the random walk is transient.
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Example 1.6.2 (Simple symmetric random walk on Z?)

The simple symmetric random walk on Z? has diagram

and transition probabilities
(1 /4 if|li—j]=1
Pig = 0 otherwise.

Suppose we start at 0. Let us call the walk X,, and write X" and X, for
the orthogonal projections of X,, on the diagonal lines y = +x:

Then X,;© and X, are independent simple symmetric random walks on
27127, and X,, = 0 if and only if X;7 = 0 = X, . This makes it clear that
for X,, we have

2
(2n) 2n ! " 2 as n o0
== ~ —
Poo n 2 A2n
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oo (n) _

by Stirling’s formula. Then Y | pyy’ = co by comparison with >~ , 1/n
and the walk is recurrent.

Example 1.6.3 (Simple symmetric random walk on Z?)

The transition probabilities of the simple symmetric random walk on Z3
are given by
1/6 if|li—jl=1
Pig = { 0 otherwise.
Thus the chain jumps to each of its nearest neighbours with equal probabil-
ity. Suppose we start at 0. We can only return to 0 after an even number
2n of steps. Of these 2n steps there must be ¢ up, ¢ down, j north, j south,

k east and k west for some i,4,k > 0, with i + j + k = n. By counting the
ways in which this can be done, we obtain

= 3 S ()0 2 )0

i+j+k=n i+j+k=n

> () () -

i+j+k=n

Now

the left-hand side being the total probability of all the ways of placing n
balls randomly into three boxes. For the case where n = 3m, we have

n\ nl < n
ijk) ik = \mmm
for all 4, j, k, so
oy _ (20) (N[ n N\ 1 [6\* N
~ —
Poo " =1 2 mmm/) \ 3 2A3 \ n

by Stirling’s formula. Hence, > >*_, p(()%m) < oo by comparison with
Saon 2 But pg™ = (1/6)° pi™ Y and plg" = (1/6)"pi" " for

all m so we must have
oo
Sl < oo
n=0

and the walk is transient.
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Exercises

1.6.1 The rooted binary tree is an infinite graph 7" with one distinguished
vertex R from which comes a single edge; at every other vertex there are
three edges and there are no closed loops. The random walk on 7' jumps
from a vertex along each available edge with equal probability. Show that
the random walk is transient.

1.6.2 Show that the simple symmetric random walk in Z* is transient.

1.7 Invariant distributions

Many of the long-time properties of Markov chains are connected with the
notion of an invariant distribution or measure. Remember that a measure
A is any row vector (\; : i € I) with non-negative entries. We say A is
invariant if

AP = ).

The terms equilibrium and stationary are also used to mean the same. The
first result explains the term stationary.

Theorem 1.7.1. Let (X,,)n,>0 be Markov(\, P) and suppose that X is in-
variant for P. Then (X,,1,)n>0 is also Markov(\, P).

Proof. By Theorem 1.1.3, P(X,, = i) = (AP™); = \; for all i and, clearly,
conditional on X, 1y = 4, Xinint1 is independent of X, X1, Ximan
and has distribution (p;; : j € I).

The next result explains the term equilibrium.
Theorem 1.7.2. Let I be finite. Suppose for some i € I that

pgf) m; as n—oo foralljel.

Then m = (m; : j € I) is an invariant distribution.

Proof. We have

Zﬂjzznli_)néop = hm Zp(n)—l

JjeI jel ]GI

and

m; = lim p = hrn szk Pkj = Z lim plk pk] Zﬂkpk]
kel kel kel
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where we have used finiteness of I to justify interchange of summation and
limit operations. Hence 7 is an invariant distribution.

Notice that for any of the random walks discussed in Section 1.6 we have
pgl) — 0 as n — oo for all ¢,j7 € I. The limit is certainly invariant, but it
is not a distribution!

Theorem 1.7.2 is not a very useful result but it serves to indicate a rela-
tionship between invariant distributions and n-step transition probabilities.
In Theorem 1.8.3 we shall prove a sort of converse, which is much more
useful.

Example 1.7.3

Consider the two-state Markov chain with transition matrix

(11—« o
P=(15" %)

Ignore the trivial cases « = 8 =0 and « = 8 = 1. Then, by Example 1.1.4

W (Bla+8) af(a+B)
v <5/(a+5) af(a+ )

so, by Theorem 1.7.2, the distribution (G/(a + 3),a/(a + ()) must be
invariant. There are of course easier ways to discover this.

> as n — 0o,

Example 1.7.4
Consider the Markov chain (X,,),>0 with diagram

1

—

N =

To find an invariant distribution we write down the components of the
vector equation 7P =7

1
T = 277'3

1
Mg = T + ;M2

_ 1 1
Mg = 5,72 + 573.
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In terms of the chain, the right-hand sides give the probabilities for X7,
when X, has distribution m, and the equations require X; also to have
distribution 7. The equations are homogeneous so one of them is redundant,
and another equation is required to fix m uniquely. That equation is

7T1+7T2+7T3:1

and we find that 7 = (1/5,2/5,2/5).
According to Example 1.1.6

pg?) —1/5 asn— o

so this confirms Theorem 1.7.2. Alternatively, knowing that pg?) had the

form
(n)—a—l- L n<bcos mT%—csin mr)
b= 2 2 2

we could have used Theorem 1.7.2 and knowledge of m to identify a = 1/5,
instead of working out pﬁ) in Example 1.1.6.

In the next two results we shall show that every irreducible and recurrent
stochastic matrix P has an essentially unique positive invariant measure.
The proofs rely heavily on the probabilistic interpretation so it is worth
noting at the outset that, for a finite state-space I, the existence of an
invariant row vector is a simple piece of linear algebra: the row sums of P
are all 1, so the column vector of ones is an eigenvector with eigenvalue 1,
so P must have a row eigenvector with eigenvalue 1.

For a fixed state k, consider for each i the expected time spent in i between

visits to k:
T —1

W =B ) Lox,=i

n=0
Here the sum of indicator functions serves to count the number of times n
at which X,, = i before the first passage time T}.

Theorem 1.7.5. Let P be irreducible and recurrent. Then
i) %=1
(ii) 7% = (vF : 4 € I) satisfies y* P = ~¥;
(iii) 0 <~¥ < oo for alli € 1.
Proof. (i) This is obvious. (ii) Forn =1,2,... the event {n < T}} depends
only on Xy, X1,...,X,_1, so, by the Markov property at n — 1

Py(Xy—1 =10, X, =jand n <T}) = Pp(X,,—1 =i and n < Ty)p;;.
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Since P is recurrent, under P, we have T} < oo and X¢ = X7, = k with
probability one. Therefore

Tk o0
’Yf = Eg Z lix, =y = Ex Z L{x, =j and n<T;}

n=1 n=1

= Z]P’k(Xn =jand n <Ty)
n=1

o.]
= ZZPk(Xn_l =4, X, =jand n < Tk)

i€l n=1
o
= Zpij ZIP’k(Xn_l =i and n <Tj)
el n=1
= ZPijEk Z lix, =i and m<T, —1}
i€l m=0
T, —1
= ZpijEk Z Lix,, =iy = ZVfPij-
icl m=0 il

(iii) Since P is irreducible, for each state i there exist n,m > 0 with
pgz),pg?) > 0. Then vF > Wfp,(gl) > 0 and %kpgz) < 4F =1 by (i) and
(ii).

Theorem 1.7.6. Let P be irreducible and let A be an invariant measure
for P with A\, = 1. Then X\ > ~*. If in addition P is recurrent, then A = v*.

Proof. For each j € I we have

A=) AaPig = D Aubij + Pij
ilEI ’Llik

= Z NigDigis Pirj + <pk:j + Z pkilpi1j>

i1,i27#k i1#k

= z A'LAnZ)in'LAnfl . 'pilj

ilv"' 7in7£k

+ <pkj + Z PkirPirj + .-+ Z Phiy q - -Pi2i1Pi1j>

i1#£k 11,000 ,0n —1 7k
So for j # k we obtain
)‘j > ]P)k(Xl =7 and T}, > 1) —|—]P)k(X2 =7 and T}, > 2)
+ ...+ P(X, =j5and T > n)

—>7]’~“ as n — oo.
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So A > ~k. If P is recurrent, then 4" is invariant by Theorem 1.7.5, so

=\ —~Fis also invariant and g > 0. Since P is irreducible, given i € I,
we have pg,:,l) > 0 for some n, and 0 = p = Zje[ ujpg.z) > ,uipgz), SO
i = 0.

Recall that a state 4 is recurrent if
P;(X,, =1 for infinitely many n) =1
and we showed in Theorem 1.5.3 that this is equivalent to
P;(T; < o0) = 1.
If in addition the expected return time
is finite, then we say i is positive recurrent. A recurrent state which fails to

have this stronger property is called null recurrent.

Theorem 1.7.7. Let P be irreducible. Then the following are equivalent:
(i) every state is positive recurrent;
(ii) some state i is positive recurrent;

(iii) P has an invariant distribution, 7 say.
Moreover, when (iii) holds we have m; = 1/m; for all i.

Proof. (i) = (ii) This is obvious.
(ii) = (iii) If 7 is positive recurrent, it is certainly recurrent, so P is recur-
rent. By Theorem 1.7.5, 4% is then invariant. But

> 7 =mi<oo
jel

so mj = 7} /m; defines an invariant distribution.

(iii) = (i) Take any state k. Since P is irreducible and ), ; m; = 1 we have
Ty = Ziel mpgz) > 0 for some n. Set A\; = m;/m,. Then A is an invariant
measure with A\, = 1. So by Theorem 1.7.6, A > v*. Hence

mk—Z'yiSZWk—ﬂk<oo (1.7)

iel iel

and k is positive recurrent.
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To complete the proof we return to the argument for (iii) = (i) armed
with the knowledge that P is recurrent, so A = v and the inequality (1.7)
is in fact an equality.

Example 1.7.8 (Simple symmetric random walk on 7)

The simple symmetric random walk on Z is clearly irreducible and, by
Example 1.6.1, it is also recurrent. Consider the measure

w; =1 for all .

Then

1 1
Ty = 5Mi—1 + 5Tit1

so 7 is invariant. Now Theorem 1.7.6 forces any invariant measure to be
a scalar multiple of 7. Since ), , m = oo, there can be no invariant
distribution and the walk is therefore null recurrent, by Theorem 1.7.7.

Example 1.7.9

The existence of an invariant measure does not guarantee recurrence: con-
sider, for example, the simple symmetric random walk on Z3, which is
transient by Example 1.6.3, but has invariant measure 7 given by m; = 1
for all 4.

Example 1.7.10

Consider the asymmetric random walk on Z with transition probabilities
Diii—1 = ¢ < P = Pii+1- In components the invariant measure equation
TP = 7 reads

M = Mi—1P + Ti+1g-

This is a recurrence relation for m with general solution
™ = A+ B(p/q)".

So, in this case, there is a two-parameter family of invariant measures —
uniqueness up to scalar multiples does not hold.

Example 1.7.11

Consider a success-run chain on Z™*, whose transition probabilities are given
by
Piji+1 = DPis  Pio = ¢ = 1 — ;.
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Then the components of the invariant measure equation 7P = 7 read

o0
Ty = E qiTq,
i=0

T = pi—1Mi—1, fori > 1.

Suppose we choose p; converging sufficiently rapidly to 1 so that

p= Hpi > 0.
i=0

Then for any invariant measure 7 we have

oo

o = Z(l — pi)pi-1---pomo = (1 — p)mo.
i=0

This equation forces either mg = 0 or mg = o0, so there is no non-zero
invariant measure.

Exercises

1.7.1 Find all invariant distributions of the transition matrix in Exercise
1.2.1.

1.7.2 Gas molecules move about randomly in a box which is divided into two
halves symmetrically by a partition. A hole is made in the partition. Sup-
pose there are N molecules in the box. Show that the number of molecules
on one side of the partition just after a molecule has passed through the hole
evolves as a Markov chain. What are the transition probabilities? What is
the invariant distribution of this chain?

1.7.3 A particle moves on the eight vertices of a cube in the following
way: at each step the particle is equally likely to move to each of the three
adjacent vertices, independently of its past motion. Let ¢ be the initial
vertex occupied by the particle, o the vertex opposite i. Calculate each of
the following quantities:
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(i) the expected number of steps until the particle returns to i;
(ii) the expected number of visits to o until the first return to i;

(iii) the expected number of steps until the first visit to o.

1.7.4 Let (X,,)n>0 be a simple random walk on Z with p; ;1 = ¢ <p =
Diji+1- Find

To—1
7 =Eg (Z 1{Xn:i}>

n=0
and verify that
7 = igf i for all 4

where the infimum is taken over all invariant measures A with A\g = 1.
(Compare with Theorem 1.7.6 and Example 1.7.10.)

1.7.5 Let P be a stochastic matrix on a finite set I. Show that a distribution
7 is invariant for P if and only if 7(I — P+ A) = a, where A = (a;j : i,j € I)
with a;; = 1 for all ¢ and j, and a = (a; : i € I) with a; = 1 for all i. Deduce
that if P is irreducible then I — P+ A is invertible. Note that this enables one
to compute the invariant distribution by any standard method of inverting
a matriz.

1.8 Convergence to equilibrium

We shall investigate the limiting behaviour of the n-step transition proba-
bilities pg;?) as n — 0o. As we saw in Theorem 1.7.2, if the state-space is
finite and if for some ¢ the limit exists for all j, then it must be an invariant
distribution. But, as the following example shows, the limit does not always

exist.

Example 1.8.1

Consider the two-state chain with transition matrix

0 1
P <1 0) |
Then P2 = I, so P?" = I and P?"*! = P for all n. Thus pfg) fails to
converge for all 4, j.

Let us call a state ¢ aperiodic if p@)

i > 0 for all sufficiently large n. We
leave it as an exercise to show that i is aperiodic if and only if the set
{n >0: pgf S 0} has no common divisor other than 1. This is also
a consequence of Theorem 1.8.4. The behaviour of the chain in Example

1.8.1 is connected with its periodicity.
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Lemma 1.8.2. Suppose P is irreducible and has an aperiodic state i.

Then, for all states j and k, p%) > 0 for all sufficiently large n. In particular,

all states are aperiodic.
Proof. There exist r,s > 0 with p?;), PEZ) > (0. Then

(r+n+s r) (n) (s
Djk ) > pg'i)pgi pgk) >0

for all sufficiently large n.

Here is the main result of this section. The method of proof, by coupling
two Markov chains, is ingenious.

Theorem 1.8.3 (Convergence to equilibrium). Let P be irreducible
and aperiodic, and suppose that P has an invariant distribution w. Let A
be any distribution. Suppose that (X,,),>0 is Markov(\, P). Then

P(X, =j) —m asn— oo for all j.

In particular,

pg‘) —m; asn — oo foralli,j.

Proof. We use a coupling argument. Let (Y},),>0 be Markov(mr, P) and
independent of (X,,)n>0. Fix a reference state b and set

T=inf{n>1:X, =Y, =b}.

Step 1. We show P(T' < oo0) = 1. The process W,, = (X,,,Y,,) is a Markov
chain on I x I with transition probabilities

P(i,k)(j,l) = PijPki
and initial distribution
Hik) = AiTg-
Since P is aperiodic, for all states i, j, k, [ we have

~(n) _ n) (n)
Py = Pij P >0
for all sufficiently large n; so P is irreducible. Also, P has an invariant
distribution given by
7~r(i,k) =TTk

so, by Theorem 1.7.7, P is positive recurrent. But T is the first passage
time of W, to (b,b) so P(T' < oo) = 1, by Theorem 1.5.7.
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Step 2. Set
X, ifn<T
Ty =
Y, ifn>T.

The diagram below illustrates the idea. We show that (Z,),>0 is
Markov(\, P).

The strong Markov property applies to (W,),>0 at time T, so
(X14n, Yrin)n>0 18 Markov(é(bﬁ),ﬁ) and independent of (Xj,Yp),
(X1,Y1),..., (X7, Yr). By symmetry, we can replace the process
(X7 Y2 )00 BY (Y1tny X74n)n>0 which is also Markov(d(, ), P) and
remains independent of (Xy,Yp), (X1,Y1),...,(X7,Yr). Hence W) =
(Zn, Z!) is Markov(u, P) where

Z! =

n

Y, in<T
X, ifn>T.

In particular, (Z,,),>0 is Markov(A, P).

Step 3. We have
P(Z,=j)=P(X,=jandn<T)+P(Y,=jand n>T)

S0

P(Xy = j) = 5] = [P(Zn = j) = P(Ye = j)|
=P(X,=jandn<T)—P(Y,=jand n<T)|
<Pn<T)

and P(n < T) — 0 as n — o0.
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To understand this proof one should see what goes wrong when P is
not aperiodic. Consider the two-state chain of Example 1.8.1 which has
(1/2,1/2) as its unique invariant distribution. We start (X,,),>0 from 0
and (Y;,)n>0 with equal probability from 0 or 1. However, if Y = 1, then,
because of periodicity, (X,,)n>0 and (Y},),>0 will never meet, and the proof
fails. We move on now to the cases that were excluded in the last theorem,
where (X,,)n>0 is periodic or transient or null recurrent. The remainder of
this section might be omitted on a first reading.

Theorem 1.8.4. Let P be irreducible. There is an integer d > 1 and a
partition

I=CoUuCiU...UCy4_

such that (setting Cpg4, = C;)
(i) p (n) > 0 only ifi € C, and j € C,.,, for some r;

(ii) pgj D > 0 for all sufficiently large n, for all i,j € C,., for all r.

Proof. Fix astate k and consider S = {n >0: p(n) > 0}. Chooseny,ng € S
with n; < ng and such that d := ny —n; is as small as possible. (Here and
throughout we use the symbol := to mean ‘defined to equal’.) Define for
r=0,...,d—1

(ncH- )

C.={iel:p, > 0 for some n > 0}.

(nd+r) > 0 and

> 0 for some r,s € {0,1,... ,d — 1}, then, choosing m > 0 so that
pg;gn) > O we have p(nd+r+m) > 0 and p(nd—‘rs—‘rm)

of d. Hence we have a partition.

To prove (i) suppose pgj) > 0 and 7 € C,.. Choose m so that p;,

(md—i—r—i—n)

Then CoU...UCy_1 =1, by 1rreduc1b1hty Moreover, if p,,
(nd+s)
Pr;

> (0 so r = s by minimality
(md—‘,—r) > 0’
then Pi; > 050 j € Cryp as required. By taking i = j = k we now
see that d must divide every element of S, in particular n;.

Now for nd > n%, we can write nd = gny + r for integers ¢ > n; and
0 <r <njy—1. Since d divides n; we then have r = md for some integer
m and then nd = (¢ — m)ny + mny. Hence

d
P = ) )™ > 0

and hence nd € S. To prove (ii) for i,5 € C, choose m; and ms so that
pl(;nl) > 0 and p(mz) > 0, then

pgjmlJrnderz) > p (ml) ("d)p,iTz) >0
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whenever nd > n2. Since mj + ms is then necessarily a multiple of d, we
are done.

We call d the period of P. The theorem just proved shows in particular for
all i € I that d is the greatest common divisor of the set {n > 0: pgzﬂ > 0}.
This is sometimes useful in identifying d.

Finally, here is a complete description of limiting behaviour for irre-
ducible chains. This generalizes Theorem 1.8.3 in two respects since we
require neither aperiodicity nor the existence of an invariant distribution.
The argument we use for the null recurrent case was discovered recently by
B. Fristedt and L. Gray.

Theorem 1.8.5. Let P be irreducible of period d and let Cy,Cq,... ,Cq_1
be the partition obtained in Theorem 1.8.4. Let A\ be a distribution with
>icco Mi = 1. Suppose that (Xp)n>o is Markov(A, P). Then for r =
0,1,...,d—1 and j € C,. we have

P(Xpgyr =J) = d/m; asn — oo

where m; is the expected return time to j. In particular, for ¢« € Cy and

j € C,. we have
E;“”’") —d/mj asmn — oo.
Proof

Step 1. We reduce to the aperiodic case. Set v = AP", then by Theorem

1.8.4 we have
Z V; = 1.
’LGC7

Set Y, = Xpd+r, then (Y},),>0 is Markov(v, P%) and, by Theorem 1.8.4, P?
is irreducible and aperiodic on C,.. For j € C, the expected return time of
(Yo)n>o0 to j is m;/d. So if the theorem holds in the aperiodic case, then

P(Xngyr =7) =P, =j) = d/m; asn— o0

so the theorem holds in general.

Step 2. Assume that P is aperiodic. If P is positive recurrent then 1/m; =
m;, where 7 is the unique invariant distribution, so the result follows from
Theorem 1.8.3. Otherwise m; = oo and we have to show that

P(X,=j)—0 asn— oo.
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If P is transient this is easy and we are left with the null recurrent
case.

Step 3. Assume that P is aperiodic and null recurrent. Then
D Pi(Ty > k) = Ej(Ty) = oo
k=0

Given € > 0 choose K so that

K-1
P;(T; > k)
k=0

Then, for n > K — 1

1> ]P’(Xk:jande;éjform:k—Fl,...,n)

Z
= Z ]P’(Xij)Pj(13>”_k)
K_

so we must have P(X,,_ = j) < ¢/2 for some k € {0,1,... ,K — 1}.

Return now to the coupling argument used in Theorem 1.8.3, only now let
(Y5, )n>0 be Markov(u, P), where p is to be chosen later. Set W,, = (X,,,Y},).
As before, aperiodicity of (X,,),>0 ensures irreducibility of (W,,),>0. If
(Wh)n>o is transient then, on taking u = A, we obtain

P(X, =j)? =P(W, = (j,4)) =0

as required. Assume then that (W,,),>0 is recurrent. Then, in the notation
of Theorem 1.8.3, we have P(T < co) = 1 and the coupling argument shows
that

P(X,=3j)—-PY,=3)—0 as n — o0o.

We exploit this convergence by taking 4 = AP* for k=1,... ,K — 1, so
that P(Y,, = j) = P(X,,4x = j). We can find N such that for n > N and
k=1,...,K—1,
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But for any n we can find k € {0,1,... , K — 1} such that P(X,,1r = j) <
¢/2. Hence, for n > N
P(X, =j) <e.

Since € > 0 was arbitrary, this shows that P(X,, = j) — 0 as n — oo, as
required.

Exercises

1.8.1 Prove the claims (e), (f) and (g) made in example (v) of the Intro-
duction.

1.8.2 Find the invariant distributions of the transition matrices in Exercise
1.1.7, parts (a), (b) and (c), and compare them with your answers there.

1.8.3 A fair die is thrown repeatedly. Let X,, denote the sum of the first n
throws. Find
lim P(X,, is a multiple of 13)

n—oo

quoting carefully any general theorems that you use.

1.8.4 Each morning a student takes one of the three books he owns from
his shelf. The probability that he chooses book i is a;, where 0 < a; < 1 for
1 =1,2,3, and choices on successive days are independent. In the evening
he replaces the book at the left-hand end of the shelf. If p, denotes the
probability that on day n the student finds the books in the order 1,2,3,
from left to right, show that, irrespective of the initial arrangement of the
books, p, converges as n — oo, and determine the limit.

1.8.5 (Renewal theorem). Let Y7,Y5,... be independent, identically
distributed random variables with values in {1,2,...}. Suppose that the

set of integers
{n:P(Yy =n) >0}

has greatest common divisor 1. Set p = E(Y7). Show that the following
process is a Markov chain:

X,=inf{m>n:m=Y, +... + Y} for some k > 0} —n.

Determine

lim P(X,, = 0)

n—oo

and hence show that as n — o

P(n=Y1 +...+ Y} for some k >0) — 1/pu.
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(Think of Y1,Ya, ... as light-bulb lifetimes. A bulb is replaced when it fails.
Thus the limiting probability that a bulb is replaced at time n is 1/u. Al-
though this appears to be a very special case of convergence to equilibrium,
one can actually recover the full result by applying the renewal theorem to
the excursion lengths SZ-(I), 5’52), ... from state i.)

1.9 Time reversal

For Markov chains, the past and future are independent given the present.
This property is symmetrical in time and suggests looking at Markov chains
with time running backwards. On the other hand, convergence to equilib-
rium shows behaviour which is asymmetrical in time: a highly organised
state such as a point mass decays to a disorganised one, the invariant dis-
tribution. This is an example of entropy increasing. It suggests that if
we want complete time-symmetry we must begin in equilibrium. The next
result shows that a Markov chain in equilibrium, run backwards, is again a
Markov chain. The transition matrix may however be different.

Theorem 1.9.1. Let P be irreducible and have an invariant distribution
m. Suppose that (X,)o<n<n is Markov(m, P) and set Y,, = Xy_,,. Then
(Yo)o<n<n is Markov(w, P), where P = (p;;) is given by

Wj]f)\ji = Wipij fOI' a]l ’L,j
and P is also irreducible with invariant distribution 7.
Proof. First we check that P is a stochastic matrix:
pji = 1A mipi; = 1
c ™ <
iel Jger
since 7 is invariant for P. Next we check that 7 is invariant for P:
Zﬂjﬁji = Zﬂz‘pij =T
jel jel

since P is a stochastic matrix.
We have

P(}/O :il,Y1 :i27"' 7YN :ZN)
=P(Xo=in, X1 =in_1,..., XN =11)

—~
= TinDPiyin_1 - Pigis = Ti1Piyig -+ - Pin _1in

-~
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so, by Theorem 1.1.1, (Y})o<n<n is Markov(w,ﬁ). Finally, since P is
irreducible, for each pair of states i,j there is a chain of states i; =
1,82y« v 5 in—1,0n = J With p; sy ... Di, 5, > 0. Then

ﬁininfl . ’ﬁiQil = Ti1Piviz -+ - Pin_1iy /7Tin >0

so P is also irreducible.

The chain (Y),)o<n<n is called the time-reversal of (X,,)o<n<n-
A stochastic matrix P and a measure A are said to be in detailed balance
if
Aipij = A\jpj; for all i, 7.
Though obvious, the following result is worth remembering because, when
a solution A to the detailed balance equations exists, it is often easier to
find by the detailed balance equations than by the equation A = AP.

Lemma 1.9.2. If P and ) are in detailed balance, then X is invariant for
P.

Proof. We have (AP); = Zjel \jDji = Zjel AiDij = Ai-
Let (X,,)n>0 be Markov(A, P), with P irreducible. We say that (X,,)n>0
is reversible if, for all N > 1, (Xn_n)o<n<n is also Markov(A, P).

Theorem 1.9.3. Let P be an irreducible stochastic matrix and let A be
a distribution. Suppose that (X,,),>0 is Markov(\, P). Then the following
are equivalent: -

(a) (Xn)n>o Is reversible;

(b) P and X\ are in detailed balance.

Proof. Both (a) and (b) imply that A is invariant for P. Then both (a) and
(b) are equivalent to the statement that P = P in Theorem 1.9.1.

We begin a collection of examples with a chain which is not reversible.

Example 1.9.4

Consider the Markov chain with diagram:
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The transition matrix is

0 2/3 1/3
P=|(1/3 0 2/3
2/3 1/3 0

and 7 = (1/3,1/3,1/3) is invariant. Hence P = PT, the transpose of P.
But P is not symmetric, so P # P and this chain is not reversible. A
patient observer would see the chain move clockwise in the long run: under
time-reversal the clock would run backwards!

Example 1.9.5

Consider the Markov chain with diagram:

p qa p q

0 1 i—1 i 41 M—1 M

where 0 < p=1— ¢ < 1. The non-zero detailed balance equations read
AiDiyi41 = Nig1Piy1,s fori=0,1,... M —1.
So a solution is given by

A= ((p/q)i:i:O,l,... , M)

and this may be normalised to give a distribution in detailed balance with
P. Hence this chain is reversible.

If p were much larger than ¢, one might argue that the chain would tend
to move to the right and its time-reversal to the left. However, this ignores
the fact that we reverse the chain in equilibrium, which in this case would
be heavily concentrated near M. An observer would see the chain spending
most of its time near M and making occasional brief forays to the left,
which behaviour is symmetrical in time.

Example 1.9.6 (Random walk on a graph)

A graph G is a countable collection of states, usually called vertices, some
of which are joined by edges, for example:
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Thus a graph is a partially drawn Markov chain diagram. There is a natural
way to complete the diagram which gives rise to the random walk on G.
The valency v; of vertex 4 is the number of edges at . We have to assume
that every vertex has finite valency. The random walk on G picks edges
with equal probability:

1 1
1 2 3 2
1
3
1Y 1
2 3
1 ;} 1
3 A \ 2
4 1 1 3
3 2

Thus the transition probabilities are given by

_ { 1/v; if (4,7) is an edge
Piy = 0 otherwise.

We assume G is connected, so that P is irreducible. It is easy to see that
P is in detailed balance with v = (v; : i € G). So, if the total valency
0 =) icq Vi is finite, then 7 = v/0 is invariant and P is reversible.

Example 1.9.7 (Random chessboard knight)
A random knight makes each permissible move with equal probability. If it

starts in a corner, how long on average will it take to return?

This is an example of a random walk on a graph: the vertices are the
squares of the chessboard and the edges are the moves that the knight can
take:
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The diagram shows a part of the graph. We know by Theorem 1.7.7 and
the preceding example that

EC(TC) = 1/7Tc = Z(Ui/vc)

%

so all we have to do is identify valencies. The four corner squares have
valency 2, and the eight squares adjacent to the corners have valency 3.
There are 20 squares of valency 4, 16 of valency 6, and the 16 central
squares have valency 8. Hence

_ 8+24+80+96+128

EC(TC) 9

= 168.

Alternatively, if you enjoy solving sets of 64 simultaneous linear equations,
you might try finding 7 from 7P = 7, or calculating E.(T,) using Theorem
1.3.5!

Exercises

1.9.1 In each of the following cases determine whether the stochastic matrix
P, which you may assume is irreducible, is reversible:

0 P 1—p
1—0p p )
@ (Y,7 .7, 0 |1-p p

(¢) I=A0,1,...,N}andp;; =0if [j —i| >2;
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(d> I = {07 1727 ce } and Pbo1 = ]-7 Piji+1 =D Pii—1 = 1 —D for 4 > 17
(e) Pij = Pji forall 4,5 € S.

1.9.2 Two particles X and Y perform independent random walks on the
graph shown in the diagram. So, for example, a particle at A jumps to B,
C or D with equal probability 1/3.

Find the probability that X and Y ever meet at a vertex in the following
cases:

(a) X starts at A and Y starts at B;
(b) X starts at A and Y starts at E.

For I = B, D let M; denote the expected time, when both X and Y start
at I, until they are once again both at I. Show that 9Mp = 16 M.

1.10 Ergodic theorem

Ergodic theorems concern the limiting behaviour of averages over time.
We shall prove a theorem which identifies for Markov chains the long-run
proportion of time spent in each state. An essential tool is the following
ergodic theorem for independent random variables which is a version of the
strong law of large numbers.

Theorem 1.10.1 (Strong law of large numbers). Let Y7,Y5,... be
a sequence of independent, identically distributed, non-negative random
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variables with E(Y7) = p. Then

Yi+...+Y
]P’< S n—>,uasn—>oo>:1.
n

Proof. A proof for the case ;1 < oo may be found, for example, in Probability
with Martingales by David Williams (Cambridge University Press, 1991).

The case where p = oo is a simple deduction. Fix N < oo and set Y,ﬁN) =
Y,, N N. Then

Vid.o..4Y, v+ 4y
> —

E(Y1 AN) as n — 00
n n

with probability one. As N T oo we have E(Y; A N) T © by monotone

convergence (see Section 6.4). So we must have, with probability 1

Yi+... 1Y,
n

— 00 as 1 — OQ.

We denote by V;(n) the number of visits to i before n:

n—1
k=0

Then V;(n)/n is the proportion of time before n spent in state i. The
following result gives the long-run proportion of time spent by a Markov
chain in each state.

Theorem 1.10.2 (Ergodic theorem). Let P be irreducible and let A
be any distribution. If (X,,),>0 is Markov(\, P) then

]P(Vi(n)ﬁ ! asn—>oo>:1

n m;

where m; = E;(T;) is the expected return time to state i. Moreover, in the
positive recurrent case, for any bounded function f : I — R we have

n—1
P(rlL Zf(Xk)Hfasnﬁoo> =1

k=0

where

f= Zﬂifi

iel

and where (m; : ¢ € I) is the unique invariant distribution.
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Proof. If P is transient, then, with probability 1, the total number V; of
visits to ¢ is finite, so

Vi(n)gvi—>0: 1.
n n m;

Suppose then that P is recurrent and fix a state i. For T" = T; we have
P(T < o0) = 1 by Theorem 1.5.7 and (X74,)n>0 is Markov(d;, P) and
independent of Xy, X1,...,Xr by the strong Markov property. The long-
run proportion of time spent in 4 is the same for (Xr4,,)n>0 and (X,)n>o0,
so it suffices to consider the case A\ = 9;.

Write Si(T) for the length of the rth excursion to ¢, as in Section 1.5. By
Lemma 1.5.1, the non-negative random variables Si(l), Si(z), ... are indepen-
dent and identically distributed with Ei(Si(T)) =m,;. Now

S 4 MO
the left-hand side being the time of the last visit to ¢ before n. Also
Sy sV 5
the left-hand side being the time of the first visit to 7 after n — 1. Hence

SM 4 MY SM s
Vi(n) Vi(n) Vi)

IN
S
IN

(1.8)

By the strong law of large numbers

P<$”+“.+$m

—m;asn—oo| =1
n
and, since P is recurrent

P(Vi(n) — oo as n — o0) = 1.

So, letting n — oo in (1.8), we get

P(V;T(Ln) —>miasn—>oo>:1,

which implies
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Assume now that (X, ), >0 has an invariant distribution (m; : i € I). Let
f I — R be abounded function and assume without loss of generality that
|f] < 1. For any J C I we have

n—1
V> s - g =[S (M - w )

k=0 iel

SZ Vi(n)_ i+z Vi(n)_m
ieg !l n igg

C X[y (MO 1)
ieg M idJ n

§2Z Vi(n)—ﬂ'i —l—QZm.
ies ! " idJ

We proved above that

P(Vi:ln) — T asn—>ooforalli> =1.

Given € > 0, choose J finite so that
Z < 6/4
idJ

and then N = N(w) so that, for n > N(w)

Vi
Z (n) _ ™| < e/4.
ieJ
Then, for n > N(w), we have
1 n—1
SO F(X) —fl<e,
k=0

which establishes the desired convergence.

We consider now the statistical problem of estimating an unknown tran-
sition matrix P on the basis of observations of the corresponding Markov
chain. Consider, to begin, the case where we have N + 1 observations
(Xn)o<n<n. The log-likelihood function is given by

l(P) = log(/\XopXoX1 - 'pXN—1XN) = Z Nij Ingij
i,5€l
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up to a constant independent of P, where N;; is the number of transitions
from i to j. A standard statistical procedure is to find the mazimum likeli-
hood estimate P, which is the choice of P maximizing I (P). Since P must
satisfy the linear constraint » ipij=1 for each i, we first try to maximize

I(P)+ Z HiDij

i,5€1

and then choose (p; : ¢ € I) to fit the constraints. This is the method of
Lagrange multipliers. Thus we find

N-1 N-1
Pii = Y Uixo=ixe=y/ Y Lx.=i}
n=0 n=0

which is the proportion of jumps from ¢ which go to j.

We now turn to consider the consistency of this sort of estimate, that is
to say whether p;; — p;; with probability 1 as N — oo. Since this is clearly
false when ¢ is transient, we shall slightly modify our approach. Note that
to find p;; we simply have to maximize

ZNij log pi;
jer

subject to Zj pij = 1: the other terms and constraints are irrelevant. Sup-
pose then that instead of N 4 1 observations we make enough observations
to ensure the chain leaves state i a total of N times. In the transient case
this may involve restarting the chain several times. Denote again by IV;;
the number of transitions from ¢ to j.

To maximize the likelihood for (p;; : j € I) we still maximize
Z Nij log pij
jel
subject to > jpij =1, which leads to the maximum likelihood estimate

But N;; = Y; + ... + Yy, where Y,, = 1 if the nth transition from i is to
j, and Y,, = 0 otherwise. By the strong Markov property Yi,... ,Yy are
independent and identically distributed random variables with mean p;;.
So, by the strong law of large numbers

P(pij — pij as N — 00) =1,

which shows that p;; is consistent.
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Exercises

1.10.1 Prove the claim (d) made in example (v) of the Introduction.

1.10.2 A professor has N umbrellas. He walks to the office in the morning
and walks home in the evening. If it is raining he likes to carry an um-
brella and if it is fine he does not. Suppose that it rains on each journey
with probability p, independently of past weather. What is the long-run
proportion of journeys on which the professor gets wet?

1.10.3 Let (X,,),,>0 be an irreducible Markov chain on I having an invariant
distribution 7. For J C I let (Y,,)m>0 be the Markov chain on J obtained
by observing (X, ),>0 whilst in J. (See Example 1.4.4.) Show that (Y,)m>0
is positive recurrent and find its invariant distribution.

1.10.4 An opera singer is due to perform a long series of concerts. Hav-
ing a fine artistic temperament, she is liable to pull out each night with
probability 1/2. Once this has happened she will not sing again until the
promoter convinces her of his high regard. This he does by sending flowers
every day until she returns. Flowers costing  thousand pounds, 0 < x <1,
bring about a reconciliation with probability \/x. The promoter stands to
make £750 from each successful concert. How much should he spend on
flowers?

1.11 Appendix: recurrence relations

Recurrence relations often arise in the linear equations associated to Markov
chains. Here is an account of the simplest cases. A more specialized case
was dealt with in Example 1.3.4. In Example 1.1.4 we found a recurrence
relation of the form

Tpy1 = axy + 0.

We look first for a constant solution x, = x; then x = ax + b, so provided
a # 1 we must have z = b/(1 — a). Now y,, = z, — b/(1 — a) satisfies
Ynt1 = AYn, SO Yn = a"yo. Thus the general solution when a # 1 is given
by

z, = Aad" +b/(1—a)

where A is a constant. When a = 1 the general solution is obviously
T, = Tg + nb.
In Example 1.3.3 we found a recurrence relation of the form

ATpt+1 + by, +cxp_1 =0
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where a and ¢ were both non-zero. Let us try a solution of the form z,, = \";
then aA? 4+ b+ c = 0. Denote by o and 3 the roots of this quadratic. Then

Yn = Aa™ + BG"
is a solution. If o # 3 then we can solve the equations
ro=A+ B, x1=Aa+ Bf
so that yg = ¢ and y; = x1; but
a(Yn+1 = Tnt1) + 0(Yn — Tn) + c(yn—1 — Tn-1) =0
for all n, so by induction y,, = x,, for all n. If a = 8 # 0, then
Yn = (A+nB)a"
is a solution and we can solve
xg=Aa", z1=(A+ B)a"

so that yo = zg and y; = z1; then, by the same argument, y,, = x,, for all
n. The case @« = § = 0 does not arise. Hence the general solution is given
by
Aa™ + Bp" ifa#p
= { (A4+nB)a™ if a=p.

1.12 Appendix: asymptotics for n!

Our analysis of recurrence and transience for random walks in Section 1.6
rested heavily on the use of the asymptotic relation

n! ~ Ay/n(n/e)” asn — oo

for some A € [1,00). Here is a derivation.

We make use of the power series expansions for || < 1

log(1+1t) =t— 3>+ 3t5 — ...
log(1—t) = —t— yt* — 35 — ...

By subtraction we obtain

1+t
;1og<1_t> =t 30+ 4
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Set A,, = n!/(n"*/2¢7") and a,, = logA,. Then, by a straightforward
calculation

1 1+ 2n+1)7t
ap — Qpi1 :(2n+1)210g<1_(2n+1)_1 -1

By the series expansion written above we have

(2n+1) Loyt v bt 1
Ay — Qpa1 = (20 e —
1 (2n+1)  3(2n+1)3 " 5 (2n+1)°

T
3 (2n+1)2 5 (2n+ 1)t T

1 1 N 1 N
“3 1l@2n+1)2 (@2n+1)* T
1 1 1 1

3@2n+1)2—-1 12n 12(n+1)°

It follows that a,, decreases and a,, — 1/(12n) increases as n — oco. Hence
a, — a for some a € [0,00) and hence A,, — A, as n — oo, where A = e“.
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Continuous-time Markov chains 1

The material on continuous-time Markov chains is divided between this
chapter and the next. The theory takes some time to set up, but once up
and running it follows a very similar pattern to the discrete-time case. To
emphasise this we have put the setting-up in this chapter and the rest in the
next. If you wish, you can begin with Chapter 3, provided you take certain
basic properties on trust, which are reviewed in Section 3.1. The first three
sections of Chapter 2 fill in some necessary background information and are
independent of each other. Section 2.4 on the Poisson process and Section
2.5 on birth processes provide a gentle warm-up for general continuous-
time Markov chains. These processes are simple and particularly important
examples of continuous-time chains. Sections 2.6-2.8, especially 2.8, deal
with the heart of the continuous-time theory. There is an irreducible level
of difficulty at this point, so we advise that Sections 2.7 and 2.8 are read
selectively at first. Some examples of more general processes are given in
Section 2.9. As in Chapter 1 the exercises form an important part of the
text.

2.1 -matrices and their exponentials

In this section we shall discuss some of the basic properties of (Q-matrices
and explain their connection with continuous-time Markov chains.

Let I be a countable set. A Q-matriz on I is a matrix Q = (g5 : 4,j € I)
satisfying the following conditions:
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(i) 0 < —¢qiy < oo forall i
(ii) g;;j >0 forall i j;
(i) » gy =0 forall i.
jel
Thus in each row of () we can choose the off-diagonal entries to be any non-
negative real numbers, subject only to the constraint that the off-diagonal

q; = ZQij < Q.

J#i

row sum is finite:

The diagonal entry g;; is then —g;, making the total row sum zero.

A convenient way to present the data for a continuous-time Markov chain
is by means of a diagram, for example:

I
—
|
—_
o

Q

Thus each off-diagonal entry ¢;; gives the value we attach to the (4, j) arrow
on the diagram, which we shall interpret later as the rate of going from i to
7. The numbers ¢; are not shown on the diagram, but you can work them
out from the other information given. We shall later interpret ¢; as the rate
of leaving 1.

We may think of the discrete parameter space {0,1,2,... } as embedded
in the continuous parameter space [0,00). For p € (0,00) a natural way to
" :n =20,1,2,...) is by the function
(' : ¢t > 0), where ¢ = logp. Consider now a finite set I and a matrix

interpolate the discrete sequence (p
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P = (pij : 1,5 € I). Is there a natural way to fill in the gaps in the discrete
sequence (P":n=20,1,2,...)7
For any matrix @ = (¢;; : i,j € I), the series

>4
k!
k=0
converges componentwise and we denote its limit by e?. Moreover, if two
matrices (1 and Qo commute, then
eQ11Q2 — ,Q1,Q2

The proofs of these assertions follow the scalar case closely and are given
in Section 2.10. Suppose then that we can find a matrix @ with e? = P.

Then
enQ — (eQ)n — pn

so (e!? : ¢t > 0) fills in the gaps in the discrete sequence.

Theorem 2.1.1. Let QQ be a matrix on a finite set I. Set P(t) = 9.
Then (P(t) : t > 0) has the following properties:

(i) P(s+t) = P(s)P(t) for all s,t (semigroup property);
(ii) (P(t):t > 0) is the unique solution to the forward equation

(iii) (P(t):t > 0) is the unique solution to the backward equation

d

GPO=QPW),  PO)=1:

(iv) for k=0,1,2,..., we have
d\F
()

Proof. For any s,t € R, sQ and t() commute, so

P(t) = QF.

e5QptQ — o(s+1)Q

proving the semigroup property. The matrix-valued power series
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has infinite radius of convergence (see Section 2.10). So each component is
differentiable with derivative given by term-by-term differentiation:

& tk—le _

PO=2 4 1=

P(t)Q = QP(t).

k=1

Hence P(t) satisfies the forward and backward equations. Moreover by
repeated term-by-term differentiation we obtain (iv). It remains to show
that P(t) is the only solution of the forward and backward equations. But
if M (t) satisfies the forward equation, then

jt(M(t)e—tQ) = (th(t)> e™1@ 4 M(t) <C(l:lt€_tQ>

= M(t)Qe '@ 4+ M(t)(—Q)e 9 =0

so M(t)e~'? is constant, and so M(t) = P(t). A similar argument proves
uniqueness for the backward equation.

The last result was about matrix exponentials in general. Now let us see
what happens to (-matrices. Recall that a matrix P = (p;; : 4,5 € I) is
stochastic if it satisfies

(i) 0 <pjj <oo forall i,j;
(ii) Zpii =1 forall i.
jel
We recall the convention that in the limit ¢ — 0 the statement f(t) = O(t)
means that f(¢)/t < C for all sufficiently small ¢, for some C' < oo. Later
we shall also use the convention that f(t) = o(t) means f(t)/t — 0ast — 0.

Theorem 2.1.2. A matrix () on a finite set I is a Q-matrix if and only if
P(t) = €@ is a stochastic matrix for all t > 0.

Proof. Ast | 0 we have
P(t)=1+1tQ+ O(t?)

so ¢;; > 0 for i # j if and only if p;;(¢) > 0 for all ¢, j and ¢ > 0 sufficiently
small. Since P(t) = P(t/n)" for all n, it follows that g;; > 0 for i # j if
and only if p;;(t) > 0 for all ¢, j and all t > 0.

If @ has zero row sums then so does Q" for every n:

Sa=>"3 "0 Ve =>4 g =0.

kel kel jel JeI kel
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So

> () —1+Z DI

jeI T jer

On the other hand, if }_ . pi;(t) = 1 for all £ > 0, then

Z%‘j = ;t Zpij(t) =

jel t=0 jeg

Now, if P is a stochastic matrix of the form e®? for some Q-matrix, we
can do some sort of filling-in of gaps at the level of processes. Fix some
large integer m and let (X),>o be discrete-time Markov(\,e®?/™). We
define a process indexed by {n/m:n=0,1,2,...} by

Xpp/m = X,
Then (X, :n=0,1,2,...) is discrete-time Markov(}, (e2/™)™) (see Exer-
cise 1.1.2) and
(eQ/mym = ¢Q = P.

Thus we can find discrete-time Markov chains with arbitrarily fine
grids {n/m : n = 0,1,2,...} as time-parameter sets which give rise to
Markov(\, P) when sampled at integer times. It should not then be too
surprising that there is, as we shall see in Section 2.8, a continuous-time
process (X¢)¢>0 which also has this property.

To anticipate a little, we shall see in Section 2.8 that a continuous-time
Markov chain (X;):>¢ with Q-matrix @ satisfies

P(th+1 = in+1 | Xto =10, -- 7th, = ZTL) = Pinint1 (tn-l-l - tn)

for all n = 0,1,2,..., all times 0 < #; < ... < t,11 and all states
i0y- -+ yint1, Where p;;(t) is the (i,7) entry in e'?. In particular, the tran-
sition probability from ¢ to j in time ¢ is given by

(Recall that := means ‘defined to equal’.) You should compare this with
the defining property of a discrete-time Markov chain given in Section 1.1.
We shall now give some examples where the transition probabilities p;;(t)
may be calculated explicitly.



2.1 Q-matrices and their exponentials 65

Example 2.1.3

We calculate p11(t) for the continuous-time Markov chain with Q-matrix

The method is similar to that of Example 1.1.6. We begin by writing down
the characteristic equation for Q:

0=det(z—Q)=x(z+2)(x+4).

This shows that @ has distinct eigenvalues 0, —2, —4. Then p11(¢) has the
form
p1i(t) =a+ be 2t 4 ce™

for some constants a, b and c. (This is because we could diagonalize @) by
an invertible matrix U:

0 0 0
Q=U|0 -2 o0 | U
0 0 —4
Then
etQ_i(tQ)k
N k!
k=0
< 0k 0 0
_ k —1
U w0 (=2) 0 ) U
k=0 0 0 (—4t)
1 0 0
=U|0 e 0 | U,
0 0 e *

so p11(t) must have the form claimed.) To determine the constants we use

1 :pll(o) = a+b+c,
—2 =q11 = p}1(0) = —2b — 4c,
7 =47 = p{1(0) = 4b+ 16c,

SO
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Example 2.1.4

We calculate p;;(t) for the continuous-time Markov chain with diagram
given above. The Q-matrix is

-2 A

A
-2 A
0
where entries off the diagonal and super-diagonal are all zero. The expo-
nential of an upper-triangular matrix is upper-triangular, so p;;(t) = 0 for
i > j. In components the forward equation P’'(t) = P(t)Q reads

Pii(t) = —Apii(t), pii(0) =1, fori < N,
pgj(t) = —Api;(t) + Api j-1(1), pi;(0) =0, fori <j <N,
Pin(t) = Apin—1(t), pin(0)=0, fori< N.

We can solve these equations. First, p;;(t) = e™* for i < N. Then, for

i<j<N
(eMpij (1) = eMp; j-1(t)

so, by induction .
J—
p”u):e_ﬁgj?iﬂ'
If i = 0, these are the Poisson probabilities of parameter At. So, start-
ing from 0, the distribution of the Markov chain at time ¢ is the same as
the distribution of min{Y;, N}, where Y; is a Poisson random variable of
parameter At.

Exercises

2.1.1 Compute py; (t) for P(t) = €'?, where
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2.1.2 Which of the following matrices is the exponential of a -matrix?

W () e (Y e

What consequences do your answers have for the discrete-time Markov
chains with these transition matrices?

2.2 Continuous-time random processes

Let I be a countable set. A continuous-time random process
(Xt)tZO = (Xt -0 S t < OO)

with values in [ is a family of random variables X; : Q — I. We are going
to consider ways in which we might specify the probabilistic behaviour (or
law) of (X¢)i>0. These should enable us to find, at least in principle,
any probability connected with the process, such as P(X; = i) or
P(X:, =i0,... , Xy,
this problem not present in the discrete-time case. They arise because, for
a countable disjoint union

() me

whereas for an uncountable union (J,~, A; there is no such rule. To avoid
these subtleties as far as possible we shall restrict our attention to processes

=iy,), or P(X; = i for some t). There are subtleties in

(Xt)t>0 which are right-continuous. This means in this context that for all
w € Q and t > 0 there exists € > 0 such that

Xs(w) = Xy (w) fort <s<t-+e.

By a standard result of measure theory, which is proved in Section 6.6,
the probability of any event depending on a right-continuous process can
be determined from its finite-dimensional distributions, that is, from the
probabilities

P(Xy, =0, Xty =01, , Xt, =in)

forn>0,0<ty<t; <...<t,andig,...,i, €I. For example

P(X; =i for some t € [0,00)) =1—lim Y P(Xg =Ji,... , Xg, = jn)

J1s--5dn ;éz

where g1, go,... is an enumeration of the rationals.
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Every path ¢t — X;(w) of a right-continuous process must remain con-
stant for a while in each new state, so there are three possibilities for the
sorts of path we get. In the first case the path makes infinitely many jumps,
but only finitely many in any interval [0, ¢]:

Xi(w) o ; S : :
? — -
o - —
0—0 —_
Jo=0 Jy Jo Ji T t
S S S Sy S S

The second case is where the path makes finitely many jumps and then
becomes stuck in some state forever:

Xi(w)

L J

R S

Jo=0 Jy Jo t

I
8

Si S | Ss

In the third case the process makes infinitely many jumps in a finite interval;
this is illustrated below. In this case, after the explosion time ( the process
starts up again; it may explode again, maybe infinitely often, or it may
not.
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Xe(w) p : R4 ; ;
e S
—  ® S
: SR N
e
J0 T2 Js 1R § t
< >< PENPRINE: :
Sl S2 Sg S4 'S5' E

We call Jy, J1,... the jump times of (X;);>0 and S1,S2,... the holding
times. They are obtained from (X¢):>¢ by

J() = O, Jn+1 = inf{t Z Jn : Xt 7& XJn}

forn =0,1,..., where inf ) = oo, and, forn =1,2,...,

g _{Jn_Jn—l ifJn_1<OO
" otherwise.

Note that right-continuity forces S,, > 0 for all n. If J,11 = oo for some
n, we define X, = X , the final value, otherwise X, is undefined. The
(first) explosion time ( is defined by

(=supd, = iSn.
n n=1

The discrete-time process (Y,)n>0 given by Y,, = X, is called the jump
process of (X¢)i>0, or the jump chain if it is a discrete-time Markov chain.
This is simply the sequence of values taken by (X;);>¢ up to explosion.

We shall not consider what happens to a process after explosion. So it
is convenient to adjoin to I a new state, oo say, and require that X; = oo
if t > (. Any process satisfying this requirement is called minimal. The
terminology ‘minimal’ does not refer to the state of the process but to the
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interval of time over which the process is active. Note that a minimal
process may be reconstructed from its holding times and jump process.
Thus by specifying the joint distribution of S1,55,... and (Y,,),>0 we have
another ‘countable’ specification of the probabilistic behaviour of (X3)¢>o.
For example, the probability that X; = ¢ is given by

P(Xy=i)=> P(Y,=iand J, <t<Jy)
n=0

and

P(X; =i for some t € [0,00)) = P(Y,, = i for some n > 0).

2.3 Some properties of the exponential distribution

A random variable T': Q — [0, oo] has exponential distribution of parameter
A(0< A< o0)if
P(T >t)=e* forallt>0.

We write T' ~ E(A) for short. If A > 0, then T" has density function

fr(t) = Ae_’\tltzo.
The mean of T is given by
E(T) = /Oo P(T > t)dt = A~*.
0
The exponential distribution plays a fundamental role in continuous-time

Markov chains because of the following results.

Theorem 2.3.1 (Memoryless property). A random variable T : Q@ —
(0,00] has an exponential distribution if and only if it has the following
memoryless property:

P(T>s+t|T>s)=P(T >t) foralls,t>0.

Proof. Suppose T' ~ E()), then

P(T > s+t —A(s+t) 3
P(T>s+t|T>s)= (P(Tjs) ) :ee_ks —eM=P(T>1).
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On the other hand, suppose T has the memoryless property whenever
P(T > s) > 0. Then g(t) = P(T > t) satisfies

g(s+1t)=g(s)g(t) forall s,t>0.

We assumed 7' > 0 so that g(1/n) > 0 for some n. Then, by induction

r=a( o ) =a(1) 5o

SO g(l) e~ for some 0 < A < oo. By the same argument, for integers
qg>1
9(p/a) = 9(1/q)" = g(1)"/

so g(r) = e for all rationals r > 0. For real ¢t > 0, choose rationals
r,s > 0 with r <t <'s. Since g is decreasing,

and, since we can choose r and s arbitrarily close to ¢, this forces g(t) = e~ ,

so T ~ E()).

The next result shows that a sum of independent exponential random
variables is either certain to be finite or certain to be infinite, and gives a cri-
terion for deciding which is true. This will be used to determine whether or
not certain continuous-time Markov chains can take infinitely many jumps
in a finite time.

Theorem 2.3.2. Let Sy, 59,... be a sequence of independent random vari-
ables with S,, ~ E(\,) and 0 < A\, < oo for all n.

) Ifi)\1 < 00, then]P’(iSn<oo> =1

n=1
(ii) Ifz)\ —oothen]P’<2S —oo>—1
n=1 n=1

Proof. (i) Suppose > -, 1/, < co. Then, by monotone convergence

E(iSn>:i)\l < 00
n=1 n=1""

P (iSn < oo) =1.
n=1

SO
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(ii) Suppose instead that > >~ 1/X, = oo. Then [[ 2 (1 + 1/A,) = occ.
By monotone convergence and independence

E (exp{—gsn}> = i[lE<exp{—Sn}> — ﬁ <1 i A1n>_1 —0

n=1

SO

p@sn:oo>:1.

The following result is fundamental to continuous-time Markov chains.

Theorem 2.3.3. Let I be a countable set and let T}, k € I, be independent
random variables with T}, ~ E(qx) and 0 < q := Y, ;qx < 0o. Set
T = infy T. Then this infimum is attained at a unique random value K of
k, with probability 1. Moreover, T and K are independent, with T' ~ E(q)
and P(K = k) = qi/q.

Proof. Set K = k if T}, < T} for all j # k, otherwise let K be undefined.
Then

P(K=kand T > t)
=P(Ty >t and T; > T}, for all j # k)

oo

gre” "°P(T; > s for all j # k)ds

—

o0

qre” &8 H e ¥%ds
i#k

:/ gre~ds = T,
t q

Hence P(K = k for some k) = 1 and T and K have the claimed joint
distribution.

The following identity is the simplest case of an identity used in Section
2.8 in proving the forward equations for a continuous-time Markov chain.

Theorem 2.3.4. For independent random variables S ~ E(\) and R ~
E(u) and for t > 0, we have

pP(S <t < S+ R)=NP(R<t<R+5).
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Proof. We have

t o0 t
pP(S <t<S+R)= ,u/ / e e M drds = )\u/ e Merl=s) g
0 Jt—s 0

from which the identity follows by symmetry.

Exercises

2.3.1 Suppose S and T are independent exponential random variables of
parameters o and [ respectively. What is the distribution of min{S,7T}?
What is the probability that S < T'? Show that the two events {S < T'}
and {min{S, T} > t} are independent.

2.3.2 Let T1,T5,... be independent exponential random variables of pa-
rameter A\ and let NV be an independent geometric random variable with

P(N =n)=p(1-p3)""1, n=1,2,....

Show that T = vazl T; has exponential distribution of parameter A\j.

2.3.3 Let S1,59,... be independent exponential random variables with
parameters Aj, Ag,... respectively. Show that A1S7 is exponential of pa-
rameter 1.

Use the strong law of large numbers to show, first in the special case
An = 1 for all n, and then subject only to the condition sup,, \,, < oo, that

o
P (Z S, = oo> =1.
n=1
Is the condition sup,, A,, < oo absolutely necessary?

2.4 Poisson processes

Poisson processes are some of the simplest examples of continuous-time
Markov chains. We shall also see that they may serve as building blocks
for the most general continuous-time Markov chain. Moreover, a Poisson
process is the natural probabilistic model for any uncoordinated stream of
discrete events in continuous time. So we shall study Poisson processes
first, both as a gentle warm-up for the general theory and because they
are useful in themselves. The key result is Theorem 2.4.3, which provides
three different descriptions of a Poisson process. The reader might well
begin with the statement of this result and then see how it is used in the
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theorems and examples that follow. We shall begin with a definition in
terms of jump chain and holding times (see Section 2.2). A right-continuous
process (X;)¢>o with values in {0,1,2,...} is a Poisson process of rate A
(0 < XA < o0) if its holding times Si, Ss,... are independent exponential
random variables of parameter A and its jump chain is given by Y, = n.
Here is the diagram:

A A A A

0 1 2 3 4
The associated ()-matrix is given by

-2 A

By Theorem 2.3.2 (or the strong law of large numbers) we have
P(J,, — 00) = 1 so there is no explosion and the law of (X;):>¢ is uniquely
determined. A simple way to construct a Poisson process of rate A is to
take a sequence S1,59,... of independent exponential random variables of
parameter A, to set Jo =0, J, =51 + ...+ 5, and then set

Xi=n if Jn§t<<]n+1.

St L S 8 Sy S5 S
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The diagram illustrates a typical path. We now show how the memory-
less property of the exponential holding times, Theorem 2.3.1, leads to a
memoryless property of the Poisson process.

Theorem 2.4.1 (Markov property). Let (X;);>0 be a Poisson process
of rate A\. Then, for any s > 0, (Xs4+ — X)t>0 is also a Poisson process of
rate A, independent of (X, : 7 < s).

Proof. 1t suffices to prove the claim conditional on the event X = i, for
each i > 0. Set Xy = X1+ — Xs. We have

{XS = ’L} = {Jl <s< Ji+1} = {Jz < 8} N {Si+1 > 8§ — Jz}
On this event

X, = Zl{SjST} forr <s
Jj=1

and the holding times 57, Ss, ... of ()N(t)tzo are given by
gl = Si+1 - (8 — Jl), gn = Si—i—n for n Z 2

as shown in the diagram.

Sit1: D Sige
< i< >4

0 le s Jiq1 Jito

Recall that the holding times 51, So, ... are independent E()). Condition
on Si,...,S; and {X, = i}, then by the memoryless property of S;i1
and independence, §1,§2, ... are themselves independent F(\). Hence,
conditional on { X = i}, S1,S,, ... are independent E (M), and independent
of S1,...,S;. Hence, conditional on { X, =i}, (Xt)tz() is a Poisson process
of rate A and independent of (X, : r < s).

In fact, we shall see in Section 6.5, by an argument in essentially the
same spirit that the result also holds with s replaced by any stopping time
T of (Xt)t>o.
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Theorem 2.4.2 (Strong Markov property). Let (X;);>o be a Poisson
process of rate A and let T be a stopping time of (X;);>¢. Then, conditional
onT < 00, (X4t — Xr7)>0 is also a Poisson process of rate \, independent
of (Xs:s<T).

Here is some standard terminology. If (X;);>¢ is a real-valued process,
we can consider its increment X; — X, over any interval (s,t]. We say that
(Xt)t>0 has stationary increments if the distribution of X4, — X depends
only on t > 0. We say that (X;);>o has independent increments if its
increments over any finite collection of disjoint intervals are independent.

We come to the key result for the Poisson process, which gives two condi-
tions equivalent to the jump chain/holding time characterization which we
took as our original definition. Thus we have three alternative definitions
of the same process.

Theorem 2.4.3. Let (X;):>o be an increasing, right-continuous integer-
valued process starting from 0. Let 0 < A < co. Then the following three
conditions are equivalent:
(a) (jump chain/holding time definition) the holding times Si,Ss,... of
(Xt)t>0 are independent exponential random variables of parameter
A and the jump chain is given by Y, = n for all n;
(b) (infinitesimal definition) (X;);>o has independent increments and, as
h | 0, uniformly in t,

P(Xt-i-h — Xt = 0) =1-— /\h + O(h), P(Xt+h — Xt = 1) = /\h + O(h)7

(c) (transition probability definition) (X;);>( has stationary independent
increments and, for each t, X; has Poisson distribution of parameter
At.

If (X;)¢>0 satisfies any of these conditions then it is called a Poisson process
of rate .

Proof. (a) = (b) If (a) holds, then, by the Markov property, for any ¢, h > 0,
the increment Xy, —X; has the same distribution as X} and is independent
of (X5:s<t). So (Xt)>0 has independent increments and as h | 0

P(Xipn— X >1)=P(X, >1)=P(J; <h)=1—e =\ +o0(h),
P(Xt+h — Xt Z 2) - P(Xh > 2 = P(JQ S h)
<P(S; <hand Sy < h) = (1 —e )% =o(h),

which implies (b).
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(b) = (c) If (b) holds, then, for i = 2,3, ..., we have P(X;1) — X; = 1) =
o(h) as h | 0, uniformly in t. Set p;(t) = P(X; = j). Then, for j =1,2,...,
J
pi(t+h) =P(Xepn=j) = > P(Xpon— Xy = i) P(X, = j — i)
i=0
— (1= A+ o(h)ps(8) + (A + o(h))pj1 (8) + o(h)

~ pi(t+h) = p;(t)
h

Since this estimate is uniform in ¢t we can put t = s — h to obtain for all
s>h

= —)\pj(t) + )\pj—l(t) + O(h’)

i(s)—pi(s—h
PRI (s ) Apya (s~ )+ O(h).
Now let h | O to see that p;(t) is first continuous and then differentiable
and satisfies the differential equation

p;(t) = —/\pj(t) + /\pj_l(t).

By a simpler argument we also find
Po(t) = —Apo(t).
Since Xy = 0 we have initial conditions
po(0) =1, p;(0)=0 forj=1,2,....

As we saw in Example 2.1.4, this system of equations has a unique solution
given by .
OV
pi(t) =e g0 =012
Hence X; ~ P(At). If (X;)i>0 satisfies (b), then certainly (X;);>o has
independent increments, but also (Xs4; — X;):>0 satisfies (b), so the above
argument shows X+ — X5 ~ P(At), for any s, which implies (c).

(c) = (a) There is a process satisfying (a) and we have shown that it must
then satisfy (c¢). But condition (c) determines the finite-dimensional distri-
butions of (X;)¢>o and hence the distribution of jump chain and holding
times. So if one process satisfying (c) also satisfies (a), so must every process
satisfying (c).

The differential equations which appeared in the proof are really the
forward equations for the Poisson process. To make this clear, consider the
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possibility of starting the process from ¢ at time 0, writing IP; as a reminder,
and set

pij(t) = Pi( Xy = j).
Then, by spatial homogeneity p;;(t) = p;—(t), and we could rewrite the
differential equations as

Pio(t) = =Apio(t), pio(0) = &0,
Pi(t) = Apij—1(t) = Apij (), pi;(0) = 6y

or, in matrix form, for () as above,

Theorem 2.4.3 contains a great deal of information about the Poisson
process of rate A. It can be useful when trying to decide whether a given
process is a Poisson process as it gives you three alternative conditions to
check, and it is likely that one will be easier to check than another. On the
other hand it can also be useful when answering a question about a given
Poisson process as this question may be more closely connected to one defi-
nition than another. For example, you might like to consider the difficulties
in approaching the next result using the jump chain/holding time definition.

Theorem 2.4.4. If (X;):>0 and (Y;):>¢ are independent Poisson processes
of rates X and p, respectively, then (X; +Y}):>¢ is a Poisson process of rate
A+ .

Proof. We shall use the infinitesimal definition, according to which (X¢):>0
and (Y;);>0 have independent increments and, as h | 0, uniformly in ¢,

P(Xiyp —Xe=0)=1—Aa+o(h), P(Xipn— Xe=1)=Ar+o0(h),
P(Yern — Y =0) =1 — ph+o(h), B(Yign —Ys=1) = ph +o(h).
Set Z; = X;+Y;. Then, since (X;);>0 and (Y;);>0 are independent, (Z;):>0
has independent increments and, as h | 0, uniformly in ¢,
P(Ziynh —Zy =0) = P(Xpyn — Xt = 0)P(Yyp, — YV = 0)
=(1—-A+o0(h)(1—ph+o(h))=1—(A+p)h+o(h),
P(Zypp — Zy = 1) = P(Xpun — Xy = 1)P(Yyup, — Y; = 0)
FP(Xpph — X = 0)P(Yipp — Vs = 1)
= (A +o0(h))(1—ph+o(h))+ (1 —=Ah+o(h))(uh+o(h))
= (A+p)h+o(h).

Hence (Z;)¢>0 is a Poisson process of rate A + p.
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Next we establish some relations between Poisson processes and the uni-
form distribution. Notice that the conclusions are independent of the rate
of the process considered. The results say in effect that the jumps of a
Poisson process are as randomly distributed as possible.

Theorem 2.4.5. Let (X;):>0 be a Poisson process. Then, conditional on
(Xt)1>0 having exactly one jump in the interval [s, s +t], the time at which
that jump occurs is uniformly distributed on [s, s + t].

Proof. We shall use the finite-dimensional distribution definition. By sta-
tionarity of increments, it suffices to consider the case s = 0. Then, for
0<uc<t,
P(J; <ul| Xy =1)=P(J; <wand X; =1)/P(X; =1)
=P(X,=1and X; — X, =0)/P(X; =1)
= hue e MW /(N M) =/t

Theorem 2.4.6. Let (X;):>0 be a Poisson process. Then, conditional on

the event {X; = n}, the jump times Ji,... ,J, have joint density function
f(tl, e ,tn) = ’I’L't_n 1{0Stlf---ftn <t}-
Thus, conditional on {X; = n}, the jump times Ji,... ,J, have the same

distribution as an ordered sample of size n from the uniform distribution
on [0,t].

Proof. The holding times St, ... ,S,11 have joint density function

n+1_—A(si+...4+Sn+1)
)\ € 1{81,...,Sn+120}

so the jump times Jq, ..., J,11 have joint density function

n+1l_—M\t,
A e +11{0§t1§'--§tn+1}'

So for A C R™ we have
P((Jl, ,Jn) € A and X :n) :P((Jl, ,Jn) € A and I <t < Jn+1)
= B_At)\n/ ]'{OStlS---Stn St}dtl ce dtn
(t17---,tn)6A

and since P(X; = n) = e~ (\t)"/n! we obtain

P((J1,...,Jn) € A| Xy =n) :/f(tl,... Jtn)dty ... dty,
A

as required.
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We finish with a simple example typical of many problems making use
of a range of properties of the Poisson process.

Example 2.4.7

Robins and blackbirds make brief visits to my birdtable. The probability
that in any small interval of duration h a robin will arrive is found to be
ph+o(h), whereas the corresponding probability for blackbirds is Bh+o(h).
What is the probability that the first two birds I see are both robins? What
is the distribution of the total number of birds seen in time t? Given that
this number is n, what is the distribution of the number of blackbirds seen
in time ¢?

By the infinitesimal characterization, the number of robins seen by time
t is a Poisson process (R;)¢>o of rate p, and the number of blackbirds is
a Poisson process (Bi):>o of rate 8. The times spent waiting for the first
robin or blackbird are independent exponential random variables S and T}
of parameters p and [ respectively. So a robin arrives first with probability
p/(p + ) and, by the memoryless property of 77, the probability that
the first two birds are robins is p?/(p + (§)?. By Theorem 2.4.4 the total
number of birds seen in an interval of duration t has Poisson distribution
of parameter (p + )t. Finally

P(B; =k |R;+B;=n)=P(B;, =k and R, =n — k)/P(R; + B; = n)
(PG ()
- <Z> <pfﬁ>k (piﬁ)n_k

so if n birds are seen in time ¢, then the distribution of the number of
blackbirds is binomial of parameters n and 3/(p + ().

Exercises

2.4.1 State the transition probability definition of a Poisson process. Show
directly from this definition that the first jump time J; of a Poisson process
of rate A is exponential of parameter \.

Show also (from the same definition and without assuming the strong
Markov property) that

]P)(tl < J1 <ty < JQ) = e_>‘t1/\(t2 — tl)e_/\(tz_tl)

and hence that Jy — J; is also exponential of parameter A and independent
of J1 .
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2.4.2 Show directly from the infinitesimal definition that the first jump time
Jp of a Poisson process of rate A has exponential distribution of parameter
A

2.4.3 Arrivals of the Number 1 bus form a Poisson process of rate one bus
per hour, and arrivals of the Number 7 bus form an independent Poisson
process of rate seven buses per hour.

(a) What is the probability that exactly three buses pass by in one hour?

(b) What is the probability that exactly three Number 7 buses pass by
while I am waiting for a Number 17

(¢) When the maintenance depot goes on strike half the buses break down
before they reach my stop. What, then, is the probability that I wait
for 30 minutes without seeing a single bus?

2.4.4 A radioactive source emits particles in a Poisson process of rate A.
The particles are each emitted in an independent random direction. A
Geiger counter placed near the source records a fraction p of the particles
emitted. What is the distribution of the number of particles recorded in
time 7

2.4.5 A pedestrian wishes to cross a single lane of fast-moving traffic. Sup-
pose the number of vehicles that have passed by time t is a Poisson process
of rate A, and suppose it takes time a to walk across the lane. Assuming
that the pedestrian can foresee correctly the times at which vehicles will
pass by, how long on average does it take to cross over safely? [Consider
the time at which the first car passes.)

How long on average does it take to cross two similar lanes (a) when one
must walk straight across (assuming that the pedestrian will not cross if,
at any time whilst crossing, a car would pass in either direction), (b) when
an island in the middle of the road makes it safe to stop half-way?

2.5 Birth processes

A birth process is a generalization of a Poisson process in which the param-
eter \ is allowed to depend on the current state of the process. The data
for a birth process consist of birth rates 0 < ¢; < oo, where j =0,1,2,....
We begin with a definition in terms of jump chain and holding times. A
minimal right-continuous process (X;);>o with values in {0,1,2,... } U{oo}
is a birth process of rates (q; : j > 0) if, conditional on X = 4, its holding
times S7,.99,... are independent exponential random variables of param-
eters q;, qi+1, ... , respectively, and its jump chain is given by Y,, =i + n.
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q0 q1 q2 q3
0 1 2 3 4

The flow diagram is shown above and the Q)-matrix is given by:

—qo 4o
-1 1
—q2 42

Example 2.5.1 (Simple birth process)

Consider a population in which each individual gives birth after an expo-

nential time of parameter A, all independently. If ¢ individuals are present

then the first birth will occur after an exponential time of parameter i\.
Then we have i 4+ 1 individuals and, by the memoryless property, the pro-
cess begins afresh. Thus the size of the population performs a birth process
with rates ¢; = iA. Let X; denote the number of individuals at time ¢ and

suppose Xg = 1. Write T for the time of the first birth. Then
E(Xt) = E(Xilr<e) + E(Xilr>e)

¢
= / A ME(X, | T = s)ds + e M.
0

Put u(t) = E(X}), then E(X; | T = s) =2u(t — s), so

t
p(t) = / 2Xe M u(t — s)ds + e
0

and setting r =t — s

—2)\/ r)dr+ 1.

w'(t) = Au(t)

so the mean population size grows exponentially:

By differentiating we obtain

E(X;) = .
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Much of the theory associated with the Poisson process goes through
for birth processes with little change, except that some calculations can no
longer be made so explicitly. The most interesting new phenomenon present
in birth processes is the possibility of explosion. For certain choices of birth
rates, a typical path will make infinitely many jumps in a finite time, as
shown in the diagram. The convention of setting the process to equal oo
after explosion is particularly appropriate for birth processes!

Xy

8 |

S| S Sy S

In fact, Theorem 2.3.2 tells us exactly when explosion will occur.

Theorem 2.5.2. Let (X;);>o be a birth process of rates (q; : j > 0),
starting from 0.

(i) Ifz ql < 00, then P(¢ < 00) = 1.
—0 Y
(ii) Iqulj = 00, then P({ = c0) = 1.

Proof. Apply Theorem 2.3.2 to the sequence of holding times Sy, Ss, . . ..

The proof of the Markov property for the Poisson process is easily
adapted to give the following generalization.
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Theorem 2.5.3 (Markov property). Let (X;):>0 be a birth process of
rates (gj : j > 0). Then, conditional on Xy =1, (Xs1¢)¢>0 is a birth process
of rates (q; : j > 0) starting from i and independent of (X, : r < s).

We shall shortly prove a theorem on birth processes which generalizes the
key theorem on Poisson processes. First we must see what will replace the
Poisson probabilities. In Theorem 2.4.3 these arose as the unique solution
of a system of differential equations, which we showed were essentially the
forward equations. Now we can still write down the forward equation

P'(t) = P(t)Q, P(0)=1.
or, in components
Pio(t) = —pio(t)qo,  pio(0) = dio
and, for j =1,2,...
P (t) = pijo1(t)gj—1 — pij(t)q;, i (0) = ;.

Moreover, these equations still have a unique solution; it is just not as
explicit as before. For we must have

pio(t) = Gipe "
which can be substituted in the equation
Pir(t) = pio(t)go — pan(t)q1, pi(0) = b

and this equation solved to give

t
pir(t) = Sie It 4 (51‘0/ (106_‘1056_‘11(t_5)ds.
0

Now we can substitute for p;;(¢) in the next equation up the hierarchy and
find an explicit expression for p;2(t), and so on.

Theorem 2.5.4. Let (X:);>0 be an increasing, right-continuous process
with values in {0,1,2,...} U {oo}. Let 0 < g; < oo for all j > 0. Then the
following three conditions are equivalent:

(a) (jump chain/holding time definition) conditional on Xy = i, the hold-
ing times S1,Ss, ... are independent exponential random variables of
parameters q;,q;+1, ... respectively and the jump chain is given by
Y, =i+ n for all n;
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(b) (infinitesimal definition) for all t,h > 0, conditional on X; = i, X¢yp
is independent of (X : s <t) and, as h | 0, uniformly in t,

P(Xepn =i | Xy =1i) =1—qih+ o(h),
P(Xitn=1+1]| Xy =1) = ¢h+o(h);

(c) (transition probability definition) for all n = 0,1,2,..., all times 0 <
to < ... <tny1 and all states ig,... ,int1

P(Xt, o, = ing1 | Xeg =0, Xb, = in) = Dinin iy (bnr1 — tn)

where (p;;(t) 14,5 = 0,1,2,...) is the unique solution of the forward
equations.

If (Xt)¢>0 satisfies any of these conditions then it is called a birth process
of rates (g; : j > 0).

Proof. (a) = (b) If (a) holds, then, by the Markov property for any ¢, h > 0,
conditional on X; = i, X4, is independent of (X, : s < ¢) and, as h | 0,
uniformly in ¢,

P(Xpp>i+1|X,=40)=P(Xp>i+1]|Xo=1)
=P(J1 <h|Xo=1i)=1—e"%" = gh+o(h),

and

P(Xin>i+2|Xe=i)=P(Xp>i+2|Xo=1)
=P(Jo<h|Xo=1i) <P(S; <hand Sy <h| Xy =1)
= (1—e %M1 —e~@+h) = o(h),

which implies (b).

(b) = (c) If (b) holds, then certainly for k =i+ 2,i+3,...
P(Xitn=k| Xt =1i) =o0(h) ash |0, uniformly in t.

Set p;;i(t) =P(Xy =j | Xo =1%). Then, for j =1,2,...

pij(t+h) =P(Xipn =37 | Xo=1)

J
=Y P(Xy=k|Xo=)P(Xppn=j| X1 = k)

k=i
pij()(1 = gjh + o(h)) + pi,j-1(t)(gj -1 + o(h)) + o(h)
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pij(t+h) — pi;(t)

I = pij—1(t)qj—1 — pij(t)g; + O(h).

As in the proof of Theorem 2.4.3, we can deduce that p;;(t) is differentiable
and satisfies the differential equation

By a simpler argument we also find

Pio(t) = —pio(t)qo-

Thus (p;;(t) : 4,7 =0,1,2,...) must be the unique solution to the forward
equations. If (X;);>( satisfies (b), then certainly

]P)(Xt7z,+1 == in—l—l | X() == i(), e 7th - Zn) == ]P(th+1 - in—l—l | th - ’Ln)
but also (X, ++)¢>0 satisfies (b), so

P(th+1 = in+1 | th = ZTL) = Pinini1 (tn-l-l - tn)
by uniqueness for the forward equations. Hence (X;):>o satisfies (c).

(c) = (a) See the proof of Theorem 2.4.3.

Exercise

2.5.1 Each bacterium in a colony splits into two identical bacteria after
an exponential time of parameter A, which then split in the same way but
independently. Let X; denote the size of the colony at time ¢, and suppose
Xo = 1. Show that the probability generating function ¢(t) = E(zX)
satisfies
¢
P(t) = ze M + / e M p(t — 5)%ds.
0

Make a change of variables u = t — s in the integral and deduce that
dp/dt = A\é(¢ — 1). Hence deduce that, for g=1—e M and n=1,2,...

P(X;=n)=q¢""'(1-q).
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2.6 Jump chain and holding times

This section begins the theory of continuous-time Markov chains proper,
which will occupy the remainder of this chapter and the whole of the next.
The approach we have chosen is to introduce continuous-time chains in
terms of the joint distribution of their jump chain and holding times. This
provides the most direct mathematical description. It also makes possible
a number of constructive realizations of a given Markov chain, which we
shall describe, and which underlie many applications.

Let I be a countable set. The basic data for a continuous-time Markov
chain on [ are given in the form of a @Q-matrix. Recall that a @-matrix on
I is any matrix @ = (g;; : ¢,j € I) which satisfies the following conditions:

(i) 0 < —gqi < oo forall i
(ii) ¢i; >0 forall i # j;
(i) » gy =0 forall 4.
jerl
We will sometimes find it convenient to write g; or ¢(i) as an alternative
notation for —g;;.

We are going to describe a simple procedure for obtaining from a Q-
matrix @) a stochastic matrix II. The jump matriz I1 = (m;; 14,5 € I) of Q
is defined by

B { ¢ij/qi ifj#iandgq #0
7Tij—

0 if j #£4and ¢; =0,
{O ifqi#()
Tii =
1 ifg; =0.

This procedure is best thought of row by row. For each i € I we take,
where possible, the off-diagonal entries in the ith row of () and scale them
so they add up to 1, putting a 0 on the diagonal. This is only impossible
when the off-diagonal entries are all 0, then we leave them alone and put a
1 on the diagonal. As you will see in the following example, the associated
diagram transforms into a discrete-time Markov chain diagram simply by
rescaling all the numbers on any arrows leaving a state so they add up to
1.

Example 2.6.1
The Q-matrix
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has diagram:

The jump matrix II of @ is given by

0 1/2 1/2
1= 1 0 0
2/3 1/3 0
and has diagram:
1
2 1
3 2
1
, 1
3" 1 T2

Here is the definition of a continuous-time Markov chain in terms of its
jump chain and holding times. Recall that a minimal process is one which
is set equal to oo after any explosion — see Section 2.2. A minimal right-
continuous process (X;)¢>o on I is a Markov chain with initial distribution
A and generator matriz @ if its jump chain (Y},),>0 is discrete-time Mar-
kov(A,II) and if for each n > 1, conditional on Yp,...,Y,_1, its holding
times Si,...,5, are independent exponential random variables of param-
eters ¢(Yp),... ,q(Y,—1) respectively. We say (X;)¢>0 is Markov(\, Q) for
short. We can construct such a process as follows: let (Y},),>0 be discrete-
time Markov(\,IT) and let T3, 7T5,... be independent exponential random
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variables of parameter 1, independent of (Y},)n>0. Set S, = T,,/q(Yn—1),
Jp=51+...+ 85, and
X Y, ifJ, <t< J,y1 for some n
b { oo otherwise.
Then (X¢);>0 has the required properties.

We shall now describe two further constructions. You will need to un-
derstand these constructions in order to identify processes in applications
which can be modelled as Markov chains. Both constructions make direct
use of the entries in the @-matrix, rather than proceeding first via the jump
matrix. Here is the second construction.

We begin with an initial state Xy = Yy with distribution A, and with an
array (T? : n > 1,5 € I) of independent exponential random variables of
parameter 1. Then, inductively for n =0,1,2,..., if Y,, =i we set

szﬂ = Tg+1/9ij7 for j # 1,

Spi1 = inf §7
n+ i n+1

{j if 57,1 =Sns1 <0
Yoy = ..
i if Spi1 = o0.
Then, conditional on Y,, = ¢, the random variables Sfl 41 are independent
exponentials of parameter ¢;; for all j # 7. So, conditional on Y, = 1,
by Theorem 2.3.3, S,11 is exponential of parameter q; = Zj 2i Qg Yo
has distribution (m;; : j € I), and S,,4+1 and Y,,4; are independent, and
independent of Yy,...,Y,, and Sy,...,S,, as required. This construction
shows why we call ¢; the rate of leaving i and g¢;; the rate of going from 1
to j.

Our third and final construction of a Markov chain with generator matrix
@ and initial distribution A is based on the Poisson process. Imagine the
state-space I as a labyrinth of chambers and passages, each passage shut
off by a single door which opens briefly from time to time to allow you
through in one direction only. Suppose the door giving access to chamber
j from chamber ¢ opens at the jump times of a Poisson process of rate g;;
and you take every chance to move that you can, then you will perform
a Markov chain with Q-matrix Q). In more mathematical terms, we begin
with an initial state Xo = Yy with distribution A, and with a family of
independent Poisson processes {(N;?);>0 :4,j € I,i # j}, (N);>0 having
rate g;;. Then set Jy = 0 and define inductively for n = 0,1,2, ...

Jpp1 = inf{t > J, : NI+ N}ZJ for some j # Y, }
. Y. Yoj
Yn+1:{j if Juq1 <ooand N;"7 # N7

n+
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The first jump time of (Ntij)tzo is exponential of parameter ¢;;. So, by
Theorem 2.3.3, conditional on Yy = 4, J; is exponential of parameter ¢; =
> i %ij» Y1 has distribution (mij g € 1), and J; and Y; are independent.

Now suppose T is a stopping time of (X;);>¢. If we condition on X, and
on the processes (Nf');>q for (k,1) # (4,7), which are independent of N/,
then {T < t} depends only on (N¥ : s < t). So, by the strong Markov
property of the Poisson process ]\th” = N:iﬁ;t — N:irj is a Poisson process of
rate ¢;; independent of (N7 : s < T), and independent of Xq and (N;');>0
for (k,l) # (i,5). Hence, conditional on T' < oo and Xp = i, (Xr74¢)i>0
has the same distribution as (X;);>0 and is independent of (X, : s < T).
In particular, we can take T = J, to see that, conditional on J, < oo
and Y, = ¢, S,+1 is exponential of parameter ¢;, Y, 41 has distribution
(mij + j € I), and S, 41 and Y4, are independent, and independent of
Yo,...,Y, and S1,...,S,. Hence (X;)i>0 is Markov(\, @) and, more-
over, (X¢)¢>o has the strong Markov property. The conditioning on which
this argument relies requires some further justification, especially when the
state-space is infinite, so we shall not rely on this third construction in the
development of the theory.

2.7 Explosion

We saw in the special case of birth processes that, although each holding
time is strictly positive, one can run through a sequence of states with
shorter and shorter holding times and end up taking infinitely many jumps
in a finite time. This phenomenon is called explosion. Recall the notation
of Section 2.2: for a process with jump times Jy,J1,J2,... and holding
times 51, .59, ..., the explosion time ( is given by

(=supJ, = iSn.
n n=1

Theorem 2.7.1. Let (X;);>0 be Markov(\,Q). Then (X;)t>o does not
explode if any one of the following conditions holds:
(i) I is finite;
(i) supg; < oo;
iel
(iii) Xo =1, and i is recurrent for the jump chain.

Proof. Set T,, = q(Y5,—1)Sn, then T1,T5, ... are independent E(1) and in-
dependent of (Y},),>0. In cases (i) and (ii), ¢ = sup; ¢; < oo and

n=1
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with probability 1. In case (iii), we know that (Y},),>¢ visits ¢ infinitely
often, at times Ny, Na, ..., say. Then

¢ = Z TN, +1 =00

m=1
with probability 1.

We say that a @Q-matrix @ is explosive if, for the associated Markov chain
P;(¢ < o0) >0 for some i € I.

Otherwise @ is non-explosive. Here as in Chapter 1 we denote by P; the
conditional probability P;(A) = P(A|Xo = ). It is a simple consequence
of the Markov property for (Y;,),>0 that under P; the process (X;);>¢ is
Markov(d;,@). The result just proved gives simple conditions for non-
explosion and covers many cases of interest. As a corollary to the next
result we shall obtain necessary and sufficient conditions for @) to be explo-
sive, but these are not as easy to apply as Theorem 2.7.1.

Theorem 2.7.2. Let (X;):>0 be a continuous-time Markov chain with

generator matrix () and write ¢ for the explosion time of (X;);>0. Fix
0 > 0 and set z; = E;(e7%). Then z = (z; : i € I) satisfies:

(1) |2]| <1 for all i;
(ii)) Qz = 0z.

Moreover, if Z also satisfies (i) and (ii), then z; < z; for all .

Proof. Condition on Xy = i. The time and place of the first jump are
independent, J; is E(g;) and

]P)i(XJl = k) = Tik-

Moreover, by the Markov property of the jump chain at time n = 1, con-
ditional on Xj, = k, (X, +¢)t>0 is Markov(dy, Q) and independent of J;.
So

Ey(e™% | X, = k) = By(e #1e 0 2™

_ " —qit —o¢y _ Qick
= e e dtEg(e =
/o & Kl ) qi +0

Xy =k)

and

- . - (o= 0¢ — ) — 4iTikZk
zz—kZ#IP’z(XJI—k)EZ(e yXJI_k)_kZ# it
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Recall that ¢; = —¢;; and ¢;m;, = ¢;1. Then

9 q” % Z qik 2k

k#1

SO

02 = qirk

kel

and so z satisfies (i) and (ii). Note that the same argument also shows that

9Jn+1 E qz’ﬂ-lk _ejn)'

Suppose that z also satisfies (i) and (ii), then, in particular
Z <1=E;(e” ")
for all 4. Suppose inductively that
z < Ei(e_e‘]”)
then, since Z satisfies (ii)

~ qﬂrzk ~ qlﬂ-lk ) —GJn _ . (»—0In
= S T Bt B
k#i

Hence 7; < E;(e~%/») for all n. By monotone convergence
Ei(e™") — Ei(e™%)

as n — 00, 80 z; < z; for all 7.

Corollary 2.7.3. For each 6 > 0 the following are equivalent:

(a) @ is non-explosive;
(b) Qz =0z and |z;| <1 for all i imply z = 0.

Proof. If (a) holds then P;(¢ = 00) = 1 so E;(e~%) = 0. By the theorem,
Qz =0z and |z| < 1 imply z; < E;(e~%), hence z < 0, by symmetry z > 0,
and hence (b) holds. On the other hand, if (b) holds, then by the theorem
E;(e=%) = 0 for all 4, so P;(¢ = o0) = 1 and (a) holds.
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Exercise

2.7.1 Let (X;)¢>0 be a Markov chain on the integers with transition rates
Qiit1 = NGy,  Qiji-1 = Mg

and ¢;; = 0 if |[j — 4| > 2, where A+ =1 and ¢; > 0 for all 4. Find for all
integers ¢:

(a) the probability, starting from 0, that X; hits 4

(b) the expected total time spent in state i, starting from 0.
In the case where p = 0, write down a necessary and sufficient condition
for (X¢)¢>0 to be explosive. Why is this condition necessary for (X;);>q to
be explosive for all 1 € [0,1/2)? -

Show that, in general, (X;)¢>¢ is non-explosive if and only if one of the

following conditions holds: -

1) A=
(i) A>pandd ;2 1/q = oo;
(iii) A<pand .o 1/q_; = oo.

2.8 Forward and backward equations

Although the definition of a continuous-time Markov chain in terms of its
jump chain and holding times provides a clear picture of the process, it does
not answer some basic questions. For example, we might wish to calculate
P;(X; = 7). In this section we shall obtain two more ways of characterizing
a continuous-time Markov chain, which will in particular give us a means
to find P;(X; = j). As for Poisson processes and birth processes, the
first step is to deduce the Markov property from the jump chain/holding
time definition. In fact, we shall give the strong Markov property as this
is a fundamental result and the proof is not much harder. However, the
proof of both results really requires the precision of measure theory, so we
have deferred it to Section 6.5. If you want to understand what happens,
Theorem 2.4.1 on the Poisson process gives the main idea in a simpler
context.

Recall that a random variable T' with values in [0, oo] is a stopping time of
(X¢)i>o0 if for each t € [0, 00) the event {T" < ¢} dependsonly on (X, : s < ).

Theorem 2.8.1 (Strong Markov property). Let (X;);>0 be
Markov(\, Q) and let T be a stopping time of (X;);>¢. Then, conditional
onT < oo and Xy = i, (Xr4t)e>0 is Markov(d;, Q) and independent of
(Xs:s8<T).

We come to the key result for continuous-time Markov chains. We shall
present first a version for the case of finite state-space, where there is a
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simpler proof. In this case there are three alternative definitions, just as for
the Poisson process.

Theorem 2.8.2. Let (X;):>o be a right-continuous process with values in
a finite set I. Let Q be a QQ-matrix on I with jump matrix II. Then the
following three conditions are equivalent:

(a) (jump chain/holding time definition) conditional on X, = 4, the
jump chain (Y,)n>0 of (X;)i>0 is discrete-time Markov(d;, 1) and for
eachn > 1, conditional on Yy, ... ,Y,_1, the holding times S, ... ,S,
are Iindependent exponential random variables of parameters
q(Yo),... ,q(Yn_1) respectively;

(b) (infinitesimal definition) for all t,h > 0, conditional on X; = i, X¢yp
is independent of (X : s < t) and, as h | 0, uniformly in t, for all j

P(Xiyn=j | X =14) = 8i + qijh + o(h);

(c) (transition probability definition) for all n = 0,1,2,..., all times 0 <
to <ty <...<t,+1 and all states ig,... ,int1

P(Xt, . = tins1 | Xeg =05+ s Xt = in) = Dininsy (tng1 — tn)
where (p;;(t) : 4,5 € I,t > 0) is the solution of the forward equation
P'(t)=P(t)Q, P(0)=1.
If (X¢)¢>0 satisfies any of these conditions then it is called a Markov chain

with generator matriz Q. We say that (X;);>0 is Markov(A, Q) for short,
where A is the distribution of Xj.

Proof. (a) = (b) Suppose (a) holds, then, as h | 0,
Pi(Xh = 'L) > Pi(Jl > h) = e—t;nh =1+ q;h+ O(h)
and for j # i we have

]P)i(Xh = ]) > ]P)(Jl < h, Y] =7, Sy > h)
=(1—e %"me” " = g;;h + o(h).

Thus for every state j there is an inequality

Pi(Xn = j) > 6i5 + qizh + o(h)
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and by taking the finite sum over j we see that these must in fact be
equalities. Then by the Markov property, for any ¢,hA > 0, conditional on
X =1, Xtqp is independent of (X : s <t) and, as h | 0, uniformly in ¢

(b) = (c) Set p;;(t) =Pi(X; = j) =P(Xy = j | Xo =1i). If (b) holds, then
for all t,h >0, as h | 0, uniformly in ¢

pij(t+h) =) PiXy = k)P(Xpyn=j | Xp = k)

= szk: 5/{:] + kajh + O(h))

Since I is finite we have

pij(t + h})b —pi(t) _ > pir(t)ar; + O(h)

kel

so, letting h | 0, we see that p;;(t) is differentiable on the right. Then by
uniformity we can replace t by t — h in the above and let h | 0 to see first
that p;;(t) is continuous on the left, then differentiable on the left, hence
differentiable, and satisfies the forward equations

pz] szk Qk]7 pz] (O) 5
kel

Since [ is finite, p;;(t) is then the unique solution by Theorem 2.1.1. Also,
if (b) holds, then

P(th—H =int1 | Xig =0, , Xy, =in) = P(th—H =int+1 | Xi, =in)
and, moreover, (b) holds for (X, +):>0 so, by the above argument,
P(Xt, ., = ing1 | Xty =in) = Pipingr (o1 — tn),

proving (c).
(c) = (a) See the proof of Theorem 2.4.3.

We know from Theorem 2.1.1 that for I finite the forward and backward
equations have the same solution. So in condition (c) of the result just
proved we could replace the forward equation with the backward equation.
Indeed, there is a slight variation of the argument from (b) to (c¢) which
leads directly to the backward equation.
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The deduction of (c) from (b) above can be seen as the matrix version
of the following result: for ¢ € R we have

1 n
<1+q+0< )) — e as n — oo.
n n

Suppose (b) holds and set
pij(t,t +h) =P(Xepp = j | Xy = 1)
then P(t,t 4+ h) = (p;;(t,t + h) : 4,5 € I) satisfies
P(t,t+h) =1+ Qh+ o(h)

and

P(0,t)=P <0,:L> P(i, 2;) ...P<(n;1)t,t> - <I+ tg +o<i>)n

Some care is needed in making this precise, since the o(h) terms, though
uniform in ¢, are not a priori identical. On the other hand, in (c) we see
that
P(0,t) = !9,
We turn now to the case of infinite state-space. The backward equation
may still be written in the form

P'(t) = QP(t), P0)=1I
only now we have an infinite system of differential equations
pii(t) =D qiwpr;(t), i (0) = b
kel
and the results on matrix exponentials given in Section 2.1 no longer apply.
A solution to the backward equation is any matrix (p;;(t) : 4,5 € I) of
differentiable functions satisfying this system of differential equations.

Theorem 2.8.3. Let (Q be a Q-matrix. Then the backward equation
P'(t) = QP(t), P0)=1I

has a minimal non-negative solution (P(t) : t > 0). This solution forms a

matrix semigroup

P(s)P(t) = P(s+1) for all s,t > 0.

We shall prove this result by a probabilistic method in combination with
Theorem 2.8.4. Note that if I is finite we must have P(t) = '@ by Theorem
2.1.1. We call (P(t) : t > 0) the minimal non-negative semigroup associated
to @, or simply the semigroup of @Q, the qualifications minimal and non-
negative being understood.

Here is the key result for Markov chains with infinite state-space. There
are just two alternative definitions now as the infinitesimal characterization
becomes problematic for infinite state-space.
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Theorem 2.8.4. Let (X;);>0 be a minimal right-continuous process with
values in I. Let () be a Q-matrix on I with jump matrix Il and semigroup
(P(t) :t > 0). Then the following conditions are equivalent:

(a) (jump chain/holding time definition) conditional on X, = i, the
jump chain (Y,)n>0 of (Xt)¢>0 is discrete-time Markov(d;, 1) and for
eachn > 1, conditional on Yy, ... ,Y,_1, the holding times S, ... , S,
are independent exponential random variables of parameters
q(Yo), ... ,q(Y,_1) respectively;

(b) (transition probability definition) for all n = 0,1,2,..., all times 0 <
to <t1 <...<tni1 and all states ig,i1,... ,int1

P(Xt, . = dnt1 | Xoy =0, Xb,, = 0n) = Diyin o (tng1 — tn).

If (X¢)¢>0 satisfies any of these conditions then it is called a Markov chain
with generator matriz Q. We say that (X;);>0 is Markov(A, Q) for short,
where A is the distribution of Xj.

Proof of Theorems 2.8.3 and 2.8.4. We know that there exists a process
(Xt)t>0 satisfying (a). So let us define P(t) by

pij (1) = Pi(X; = j).

Step 1. We show that P(t) satisfies the backward equation.

Conditional on Xy = i we have J; ~ E(g;) and Xy, ~ (m : k € I).
Then conditional on J; = s and X; = k we have (Xgyt)i>0 ~
Markov(dg, @). So

Pz(Xt =j1t< Jl) = e_q”téij

and .
]P),L(Jl S t,XJl = k,Xt = j) = / qie_qisﬂikpkj(t — S)dS.
0
Therefore

pij(t) =Pi(Xy =, t < 1) +ZP (1 <t, Xy =k, Xy =)
k#i

= e Uitg,; +Z/ gie” T i pi; (t — s)ds. (2.1)
k#1

Make a change of variable © = t — s in each of the integrals, interchange
sum and integral by monotone convergence and multiply by e%! to obtain

et Di _] = 574 + ZQz Wzkpkrj )du (2'2)
(U
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This equation shows, firstly, that p;;(t) is continuous in ¢ for all i,j.
Secondly, the integrand is then a uniformly converging sum of continuous
functions, hence continuous, and hence p;;(t) is differentiable in ¢ and sat-
isfies

" (gipii (1) + P (1) = D i€ ik (1)
k#1
Recall that ¢; = —qy; and ¢;r = ¢;m, for k # i. Then, on rearranging, we

obtain

pii(t) =D s (t) (2:3)

kel

so P(t) satisfies the backward equation.

The integral equation (2.1) is called the integral form of the backward
equation.

Step 2. We show that if ]5(15) is another non-negative solution of the back-
ward equation, then P(t) < P(t), hence P(t) is the minimal non-negative
solution.

The argument used to prove (2.1) also shows that
Pi(X:=J,t < Jpt1)

= e~ 115, +Z/ gie” T TPy (Xyms = ji t — 5 < Jp)ds.

On the other hand, if ]S(t) satisfies the backward equation, then, by revers-
ing the steps from (2.1) to (2.3), it also satisfies the integral form:

Bij(t) = e~%t6,; +Z/ Gie By (f — 5)ds. (2.5)

ki
If P(t) > 0, then
Pi(X: =j,t < Jo) =0 < p;j;(t) for all 7, and t.
Let us suppose inductively that
Pi(X: = j,t < Jpn) < pij(t) for all 4,5 and ¢,
then by comparing (2.4) and (2.5) we have

Pi(Xy = j,t < Jny1) <pij(t)  foralli,j and ¢,
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and the induction proceeds. Hence

pi;(t) = lim P;(X; =j,t < Jy,) < Dpij(t) for all 4,7 and t¢.

Step 3. Since (X;)¢>0 does not return from co we have

pij(s + t) = Pz s+t — ] Z]P) s+t :] ’ Xs = k>Pz(Xs = k)
kel

_Z]P) —k]Pk Xt—j szk pk]

kel kel

by the Markov property. Hence (P(t) : t > 0) is a matrix semigroup. This
completes the proof of Theorem 2.8.3.

Step 4. Suppose, as we have throughout, that (X;);> satisfies (a). Then,
by the Markov property

]P)(Xt7;,+1 = in+1 ‘Xto = ’i07 . ,th = Z’n)
= ]P)in (th+1_tn = in+1) = pln 7;77,+l (tn_l'_]_ - tn)

so (X¢)¢>o satisfies (b). We complete the proof of Theorem 2.8.4 by the
usual argument that (b) must now imply (a) (see the proof of Theorem

2.4.3, (c) = (a)).

So far we have said nothing about the forward equation in the case of
infinite state-space. Remember that the finite state-space results of Section
2.1 are no longer valid. The forward equation may still be written

P(t)=P(t)Q, P0)=1,

now understood as an infinite system of differential equations

kel

A solution is then any matrix (pij (t) 1 i, €l ) of differentiable functions
satisfying this system of equations. We shall show that the semigroup
(P(t) it > 0) of @@ does satisfy the forward equations, by a probabilistic
argument resembling Step 1 of the proof of Theorems 2.8.3 and 2.8.4. This
time, instead of conditioning on the first event, we condition on the last
event before time t. The argument is a little longer because there is no
reverse-time Markov property to give the conditional distribution. We need
the following time-reversal identity, a simple version of which was given in
Theorem 2.3.4.
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Lemma 2.8.5. We have
qinP(Jn <t< Jn+1 ‘ Y() = io,Yl = il,... ,Yn = ’Ln)

= inP(Jn <t< Jn+1 | Y() = Zn, 7YTL—1 = ’il,Yn = ’Lo)

Proof. Conditional on Yy = ig, ... ,Y, = i,, the holding times Sy, ... , Sp11
are independent with Sy ~ E(g;, _,). So the left-hand side is given by

/ qi, exp{_qin (t -85 = ... STL)} H iy 4 exp{_qik—lsk}dsk

A(t) k=1

where A(t) = {(s1,---,8n) : $S1+ ...+ 8, < tand s1,...,s8, > 0}. On
making the substitutions uy = t — 1 — ... — s, and up = Sp_g42, for
k=2,...,n, we obtain

qin]P’(Jn <t< Jn+1 | Y() = io, . ,Yn = ’Ln)

= /A( )qio eXp{—in (t —Ur = ... un)} H iy, _j 41 exp{_qirt—k+1uk}duk
t k=1

= QzO]P)(Jn <t < Jn+1 | Yo=tn, .., Yno1=101,Y, = ZO)

Theorem 2.8.6. The minimal non-negative solution (P(t) : ¢ > 0) of the
backward equation is also the minimal non-negative solution of the forward
equation

P'(t) = P(t)Q, P(0)=1.

Proof. Let (X¢)¢>0 denote the minimal Markov chain with generator matrix
@. By Theorem 2.8.4

pij(t) = Pi(X; = j)

oo
= ZZPz(Jn <t< Jn+1>Yn—1 = kaYn = ])
n=0 k#j

Now by Lemma 2.8.5, for n > 1, we have

]P)z(Jn <t< Jn—l—l ‘ Yn—l = k,Yn :j)
= (qi/q))Pj(Jn <t < Jpi1 | Y1 =k, Y, =1)

t
= (Qi/Qj)/ gje VPR (Jpo1 <t—s<J, | Yp1 =1i)ds
0

t
—u / 5 (g /)Py (Tnr < t—5 < Ty | Yooy = k)ds
0
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where we have used the Markov property of (Y},),>0 for the second equality.
Hence

0 t
pij(t) = (Sije_qit + Z Z/ ]Pi(Jn—l S t—s< Jn ‘ Yn—l = k)
- JO

n=1 k#j
X Pi(Yn—l - k,Yn - j)le_qudS

00 t
= ;e 0" + Z Z/ Pi(Jpo1 <t —s<Jp, Y1 =k)qrpmpje 9%ds
n=1k#j 0

t
= e [l = e ds (2.6)
0 kj

where we have used monotone convergence to interchange the sum and
integral at the last step. This is the integral form of the forward equation.
Now make a change of variable u = ¢ — s in the integral and multiply by
€%t to obtain

t
pij(t)eqjt = 51']‘ + / Zpik(u)qkjeqj”du. (27)
0 kstj

We know by equation (2.2) that e%'p;;(t) is increasing for all i, k. Hence
either
Z pir(u)qr; converges uniformly for u € [0,1]
k#j
or
Zpik(u)qkj =oo forallu>t
k#j
The latter would contradict (2.7) since the left-hand side is finite for all ¢,
S0 it is the former which holds. We know from the backward equation that
pi;(t) is continuous for all 7, j; hence by uniform convergence the integrand
in (2.7) is continuous and we may differentiate to obtain

Pi; () +pij(t)g; = Zpik(t)ij-
oy

Hence P(t) solves the forward equation.

To establish minimality let us suppose that p;;(t) is another solution of
the forward equation; then we also have

t
pij(t) = 0”4 + Z/ Pik(t — s)qrje” ¥ds.
k#j 0
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A small variation of the argument leading to (2.6) shows that, for n > 0
P;(X¢ = j,t < Jnt1)

t
= ;e 0" + Z/ Pi( Xt = j,t < Jp)qje Y%ds. (2.8)
kit 70

If P(t) > 0, then
P(X: =j,t < Jo) =0<p;;(t) foralli,jandt.
Let us suppose inductively that
Pi(X: =j,t < Jp) < pi;(t) foralli,j and ¢;
then by comparing (2.7) and (2.8) we obtain
Pi(X: = j,t < Jpy1) < pij(t) foralli,jandt
and the induction proceeds. Hence

pij(t) = lim P;(X; =j,t < J,) <p;j(t) foralli,j and t.

Exercises

2.8.1 Two fleas are bound together to take part in a nine-legged race on the
vertices A, B, C of a triangle. Flea 1 hops at random times in the clockwise
direction; each hop takes the pair from one vertex to the next and the times
between successive hops of Flea 1 are independent random variables, each
with with exponential distribution, mean 1/A. Flea 2 behaves similarly,
but hops in the anticlockwise direction, the times between his hops having
mean 1/p. Show that the probability that they are at A at a given time
t > 0 (starting from A at time ¢ = 0) is

1 2 3O+ p)t V3 — p)t
3+3exp{— 9 }cos{ 9 }

2.8.2 Let (X})i>0 be a birth-and-death process with rates A\, = nA and
tn, = np, and assume that Xo = 1. Show that h(t) = P(X; = 0) satisfies

h(t) = /Ot e~ WS 4 \h(t — 5)}ds
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and deduce that if A # p then

h(t) = (uet* — per’) /(uet* — Ae').

2.9 Non-minimal chains

This book concentrates entirely on processes which are right-continuous
and minimal. These are the simplest sorts of process and, overwhelmingly,
the ones of greatest practical application. We have seen in this chapter
that we can associate to each distribution A and @-matrix () a unique
such process, the Markov chain with initial distribution A and generator
matrix . Indeed we have taken the liberty of defining Markov chains to be
those processes which arise in this way. However, these processes do not by
any means exhaust the class of memoryless continuous-time processes with
values in a countable set I. There are many more exotic possibilities, the
general theory of which goes very much deeper than the account given in
this book. It is in the nature of things that these exotic cases have received
the greater attention among mathematicians. Here are some examples to
help you imagine the possibilities.

Example 2.9.1

Consider a birth process (X¢);>0 starting from 0 with rates ¢; = 2¢ for ¢ > 0.
We have chosen these rates so that

o0 o
Zqi_l = ZQ_i < 00
i=0 i=0

which shows that the process explodes (see Theorems 2.3.2 and 2.5.2). We
have until now insisted that X; = oo for all ¢ > (, where ( is the explosion
time. But another obvious possibility is to start the process off again from
0 at time ¢, and do the same for all subsequent explosions. An argument
based on the memoryless property of the exponential distribution shows
that for 0 <ty < ... <t,41 this process satisfies

]P(th+1 = in+1 | Xto = i07 s 7th, = ZTL) = Pinini1 (t’fH-l - tn)

for a semigroup of stochastic matrices (P(¢t) : ¢ > 0) on I. This is the
defining property for a more general class of Markov chains. Note that
the chain is no longer determined by A and @ alone; the rule for bringing
(Xt)t>0 back into I after explosion also has to be given.
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Example 2.9.2

We make a variation on the preceding example. Suppose now that the jump
chain (Y,,)n>0 of (X;)i>0 is the Markov chain on Z which moves one step
away from 0 with probability 2/3 and one step towards 0 with probability
1/3, with mg; = mp,—1 = 1/2, and that Y; = 0. Let the transition rates
for (Xi)i>0 be ¢ = 2lil for i € Z. Then (Xt)i>0 is again explosive. (A
simple way to see this using some results of Chapter 3 is to check that
(Y)n>o is transient but (X;);>0 has an invariant distribution — by solution
of the detailed balance equations. Then Theorem 3.5.3 makes explosion
inevitable.) Now there are two ways in which (X;);>¢ can explode, either
X; — —o0 or X; — oo.

The process may again be restarted at 0 after explosion. Alternatively,
we may choose the restart randomly, and according to the way that explo-
sion occurred. For example

X—{O if X; - —oc0ast((
“T1lZ X, —ooastl(

where Z takes values £1 with probability 1/2.

Example 2.9.3

The processes in the preceding two examples, though no longer minimal,
were at least right-continuous. Here is an altogether more exotic example,
due to P. Lévy, which is not even right-continuous. Consider

D,={k2™": ke Z"} forn>0

and set I = U, D,,. With each i € D,,\D,,_; we associate an independent
exponential random variable S; of parameter (2")2. There are 2"~ ! states
in (D"\D"~1)N0,1), so, for all i € T

oo

E(Y S| <@+1)) 227" < o0
j<i n=0
and
P ZSj—>ooasi—>oo = 1.
j<i
Now define

i ifZSj§t<Zij0rsomei€I

J<i J<i

s
I

oo otherwise.
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This process runs through all the dyadic rationals ¢ € I in the usual order.
It remains in i € D, \D,,—; for an exponential time of parameter 1. Between
any two distinct states ¢ and j it makes infinitely many visits to oo. The
Lebesgue measure of the set of times ¢ when X; = oo is zero. There is a
semigroup of stochastic matrices (P(t) : t > 0) on I such that, for 0 <ty <

o <t

]P)(th+1 = Zn+1 ‘ Xt() = 7:07 A 7th = Z’I’l) = pinin+1 (tTL—l-]. - tTL)

In particular, P(X; = oco) = 0 for all £ > 0. The details may be found in
Markov Chains by D. Freedman (Holden-Day, San Francisco, 1971).

We hope these three examples will serve to suggest some of the possibil-
ities for more general continuous-time Markov chains. For further reading,
see Freedman’s book, or else Markov Chains with Stationary Transition
Probabilities by K.-L. Chung (Springer, Berlin, 2nd edition, 1967), or Dif-
fusions, Markov Processes and Martingales, Vol 1: Foundations by L. C. G.
Rogers and D. Williams (Wiley, Chichester, 2nd edition, 1994).

2.10 Appendix: matrix exponentials

Define two norms on the space of real-valued N x N-matrices
Q| = sup |Qu|/[v], [|Qllsc = sup |g;.
v#£0 4,5

Obviously, ||Q||« is finite for all @ and controls the size of the entries in
Q. We shall show that the two norms are equivalent and that |Q| is well
adapted to sums and products of matrices, which ||Q||~ is not.

Lemma 2.10.1. We have

(a) 1Qlleo <1Q| < N||Q|loo;
(b) Q1 + Q2| < 1Q1] + |Q2| and |Q1Q2] < [Q1]|Q2].

Proof. (a) For any vector v we have |Qu| < |Q||v|. In particular, for the
vector €; = (0,...,1, ... ,0), with 1 in the jth place, we have |Q¢;| < |Q].
The supremum defining ||Q||« is achieved, at j say, so

1QII%, < | (¢i5)* = |Qes]* < 1QI*.

7
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On the other hand

QuI> = | ) aijv;
i\ J

<D 2 1Rl
i\ J

2

= N[QI% | D lvj]
i

and, by the Cauchy—Schwarz inequality

2

Dolul| SNY v
i i

so |Qu|? < N2||Q||%|v|?. This implies that |Q| < N||Q||so-

(b) For any vector v we have

[(Q1 + Q2)v| < [Q1v] + Q20| < (|Q1] +[Q2])|v],
|Q1Q2v] < |Q1]|Q2v] < |Q1]]Q2]|v].

Now for n =0,1,2,..., consider the finite sum
n
e
E(n)=>_ o
k=0

For each ¢ and j, and m < n, we have

[(E(n) — E(m))i;| < [|E(n) — E(m)|o < [E(n) — E(m)|
n Qk
> 9

k=m+1

> 9

k!
k=m+1

<

Since |Q| < N||Q|loo < 00, Y ey |Q|¥/k! converges by the ratio test, so

QrF
k!
k=m+1

n

0 as m,n — 0o.
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Hence each component of F(n) forms a Cauchy sequence, which therefore
converges, proving that

!
= k!

is well defined and, indeed, that the power series

= (tQ)Z’

(etQ)ij = k!

k=0

has infinite radius of convergence for all 4, j. Finally, for two commuting
matrices (1 and Q2 we have

eQ1+Q2 _ i (Q1+Q2)"

n!
n=0



3

Continuous-time Markov chains II

This chapter brings together the discrete-time and continuous-time theo-
ries, allowing us to deduce analogues, for continuous-time chains, of all the
results given in Chapter 1. All the facts from Chapter 2 that are necessary
to understand this synthesis are reviewed in Section 3.1. You will require
a reasonable understanding of Chapter 1 here, but, given such an under-
standing, this chapter should look reassuringly familiar. Exercises remain
an important part of the text.

3.1 Basic properties

Let I be a countable set. Recall that a Q-matriz on I is a matrix @) =
(gij : 4,7 € I) satisfying the following conditions:

(i) 0 < —qi; < oo forall i

(ii) ¢;; >0 forall i j;

(i) » gy =0 forall i.

jel

We set ¢; = q(i) = —qi;. Associated to any Q-matrix is a jump matriz
IT = (m;j : 4,5 € I) given by

_{Qij/Qi if j #4and ¢; #0
7Tij—

0 if j #£4and ¢; =0,
{O ifqi#O
i =
1 ifg; =0.

Note that II is a stochastic matrix.
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A sub-stochastic matriz on I is a matrix P = (p;; : 4,j € I) with non-
negative entries and such that

Zpii <1 forall .
jeI

Associated to any Q-matrix is a semigroup (P(t) : t > 0) of sub-stochastic
matrices P(t) = (p;;(t) : i,j € I). As the name implies we have

P(s)P(t)=P(s+t) forall s,t>0.

You will need to be familiar with the following terms introduced in Sec-
tion 2.2: minimal right-continuous random process, jump times, holding
times, jump chain and ezplosion. Briefly, a right-continuous process (X;);>o
runs through a sequence of states Yy, Y1, Ys,..., being held in these states
for times S1, S5, .93, ... respectively and jumping to the next state at times
Ji,J2,J3,.... Thus J,, = S1 +...+S,. The discrete-time process (Y},)n>0
is the jump chain, (S,,),,>1 are the holding times and (J,,),,>1 are the jump
times. The explosion time ( is given by

(= isn = nh—>Héo Jn.
n=1

For a minimal process we take a new state oo and insist that X; = oo for
all t > (. An important point is that a minimal right-continuous process is
determined by its jump chain and holding times.
The data for a continuous-time Markov chain (X;);>¢ are a distribution
A and a Q-matrix (). The distribution A gives the initial distribution, the
distribution of Xg. The @Q-matrix is known as the generator matriz of
(Xt)t>0 and determines how the process evolves from its initial state. We
established in Section 2.8 that there are two different, but equivalent, ways
to describe how the process evolves.
The first, in terms of jump chain and holding times, states that
(a) (Y)n>o0 is Markov(A, II);
(b) conditional on Yy =g, ... ,Yn—1 = in_1, the holding times Sy,... , S,
are independent exponential random variables of parameters
Qigys -+ > Qip ;-
Put more simply, given that the chain starts at ¢, it waits there for an
exponential time of parameter ¢; and then jumps to a new state, choosing
state j with probability m;;. It then starts afresh, forgetting what has gone
before.
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The second description, in terms of the semigroup, states that the finite-
dimensional distributions of the process are given by
(c) forallm=0,1,2,...,all times 0 <ty <t; < --- <t,1 and all states

7:077:17 L) 7in+1
P(Xt, . = tnt1 | Xoy =0, Xb,, = 0n) = Diyin o (tng1 — tn).

Again, put more simply, given that the chain starts at i, by time t it is
found in state j with probability p;;(t). It then starts afresh, forgetting
what has gone before. In the case where

ﬁzoo(t) =1 Zpij(t) >0

JeI

the chain is found at co with probability p;oo(t). The semigroup P(t) is re-
ferred to as the transition matriz of the chain and its entries p;;(t) are the
transition probabilities. This description implies that for all h > 0 the dis-
crete skeleton (X,,;,)n>0 is Markov(A, P(h)). Strictly, in the explosive case,
that is, when P(t) is strictly sub-stochastic, we should say Markov(X, P(h)),
where X and P(h) are defined on I U{oo}, extending A and P(h) by Aes = 0
and pooj(h) = 0. But there is no danger of confusion in using the simpler
notation.

The information coming from these two descriptions is sufficient for most
of the analysis of continuous-time chains done in this chapter. Note that
we have not yet said how the semigroup P(t) is associated to the Q-matrix
Q, except via the process! This extra information will be required when
we discuss reversibility in Section 3.7. So we recall from Section 2.8 that
the semigroup is characterized as the minimal non-negative solution of the
backward equation

P'(t)=QP(t), P0)=1

which reads in components
pii(6) =D awpr;(t), i (0) = b
kel

The semigroup is also the minimal non-negative solution of the forward
equation
Pl(t) = P)Q, P(0)=1.

In the case where I is finite, P(t) is simply the matrix exponential e/, and
is the unique solution of the backward and forward equations.
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3.2 Class structure

A first step in the analysis of a continuous-time Markov chain (X¢):>¢ is to
identify its class structure. We emphasise that we deal only with minimal
chains, those that die after explosion. Then the class structure is simply
the discrete-time class structure of the jump chain (Y},),>0, as discussed in
Section 1.2.

We say that ¢ leads to j and write ¢ — j if
P;(X; = j for some t > 0) > 0.

We say i communicates with j and write ¢ < j if both ¢ — j and j —
1. The notions of communicating class, closed class, absorbing state and
irreducibility are inherited from the jump chain.

Theorem 3.2.1. For distinct states ¢ and j the following are equivalent:
(i) i —J;
(ii) ¢ — j for the jump chain;
(il) Gigiy Qiyio - - - G, i, > 0 for some states ig,i1,... i, with iy = 1,
in = J;
(iv) pij(t) >0 for all t > 0;
(v) pij(t) > 0 for some t > 0.

Proof. Implications (iv) = (v) = (i) = (ii) are clear. If (ii) holds, then
by Theorem 1.2.1, there are states ig,41,... ,i, With ig = i, i, = j and
Tigis Tivis - - - T, _1i, > 0, which implies (iii). If g;; > 0, then

pii(t) = Pi(J1 <t,Y1 =5,8 > t) = (1 —e @ )me %" >0
for all £ > 0, so if (iii) holds, then
Dij(t) > Pigiy (t/1) ... piy 14, (t/0) >0
for all £ > 0, and (iv) holds.

Condition (iv) of Theorem 3.2.1 shows that the situation is simpler than
in discrete-time, where it may be possible to reach a state, but only after a
certain length of time, and then only periodically.

3.3 Hitting times and absorption probabilities

Let (X¢)t>0 be a Markov chain with generator matrix Q. The hitting time
of a subset A of I is the random variable D4 defined by

DA(w) = inf{t > 0: X;(w) € A}
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with the usual convention that inf() = co. We emphasise that (X;);>o is
minimal. So if H4 is the hitting time of A for the jump chain, then

{H* < 00} = {D? < 0}

and on this set we have
DA = Jya.

The probability, starting from 4, that (X;);>o ever hits A is then

hit =P (DA < 00) = P;(HA < 0).

(2

When A is a closed class, hf‘ is called the absorption probability. Since the
hitting probabilities are those of the jump chain we can calculate them as
in Section 1.3.

Theorem 3.3.1. The vector of hitting probabilities h* = (h{* : i € I) is
the minimal non-negative solution to the system of linear equations

hA =1 fori e A,
Zje[ qijhf =0 fori Q A.

Proof. Apply Theorem 1.3.2 to the jump chain and rewrite (1.3) in terms
of Q.

The average time taken, starting from i, for (X;);>0 to reach A is given
by
kA = E; (D).

(2

In calculating klA we have to take account of the holding times so the rela-
tionship to the discrete-time case is not quite as simple.

1 1 2 2
2

1 (2

31 3
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Example 3.3.2

Consider the Markov chain (X;):>o with the diagram given on the preceding
page. How long on average does it take to get from 1 to 47

Set k; = E;(time to get to 4). On starting in 1 we spend an average time
ql_1 =1/2 in 1, then jump with equal probability to 2 or 3. Thus

k= 5+ gka + 5ks
and similarly
ke = ¢+ 3ki+ Sks, ks=§+ ski+ jko.

On solving these linear equations we find k; = 17/12.

Here is the general result. The proof follows the same lines as Theorem
1.3.5.

Theorem 3.3.3. Assume that q; > 0 for all i ¢ A. The vector of expected
hitting times k“ = (k! : i € I) is the minimal non-negative solution to the
system of linear equations

kA =0 foric A
{ (3.1)

_Zjelqﬁkf =1 fOl"ZQA

Proof. First we show that k“ satisfies (3.1). If Xq =i € A, then D4 = 0,
so kA =0. If Xg =i & A, then DA > J;, so by the Markov property of the
jump chain

Ei(D* — Jy | Y1 = j) = E;(DY),

SO

kP =Ey(DY) =Ei()+Y E(DA=J1 | Y1 =j)Pi(Y1 =j) =q¢; '+ >_ mijki
i#i i#i

— Zq”k;l =1.

Jjel

and so

Suppose now that y = (y; : ¢ € I) is another solution to (3.1). Then
kit =y; =0 for i € A. Suppose i ¢ A, then

yi:qi_1+z77z‘jyj=qi_l+z77z‘j q]~_1+z7fjk:yk

JgA JEA kgA

=E;(S1) + Ei (S2lymasay) + Z Z i TikYk-
JEAKZA
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By repeated substitution for y in the final term we obtain after n steps

Yi = EZ—(Sl) + - +Ei(Snl{HA2n}) + Z cee Z Tig1 + o Tgp —15n Ygin -
jlgA jngA

So, if y is non-negative
n HYAn
i > Y Ei(Smlgasm) = E( > Sm>
m=1

m=1

where we use the notation H* A n for the minimum of H* and n. Now

HA
> Sm=Da
m=1

so, by monotone convergence, y; > E;(D4) = k:ZA, as required.

Exercise

3.3.1 Consider the Markov chain on {1,2,3,4} with generator matrix

112 12 0
{14 —12 0 14
Q=116 o -—1/3 1/6
0o o0 0 o

Calculate (a) the probability of hitting 3 starting from 1, (b) the expected
time to hit 4 starting from 1.

3.4 Recurrence and transience

Let (X}):>0 be Markov chain with generator matrix ). Recall that we insist
(Xt)t>0 be minimal. We say a state ¢ is recurrent if

P;({t >0: X; =4} is unbounded) = 1.
We say that i is transient if
P;({t > 0: X; =4} is unbounded) = 0.

Note that if (X;):>o can explode starting from 4 then i is certainly not
recurrent. The next result shows that, like class structure, recurrence and
transience are determined by the jump chain.
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Theorem 3.4.1. We have:
(i) if @ is recurrent for the jump chain (Y, ),>0, then i is recurrent for
(Xt)>0;
(i) ifi is transient for the jump chain, then i is transient for (X;)i>o;
(iii) every state is either recurrent or transient;

(iv) recurrence and transience are class properties.

Proof. (i) Suppose i is recurrent for (Y,,),>0. If Xo =i then (X;);>¢ does
not explode and J,, — oo by Theorem 2.7.1. Also X (J,,) =Y,, = i infinitely
often, so {t > 0: X; = i} is unbounded, with probability 1.
(ii) Suppose i is transient for (Y,,),>0. If Xo =i then
N =sup{n>0:Y, =i} < o0,

so {t > 0: X; =i} is bounded by J(NN +1), which is finite, with probability
1, because (Y,, : n < N) cannot include an absorbing state.
(iii) Apply Theorem 1.5.3 to the jump chain.
(iv) Apply Theorem 1.5.4 to the jump chain.

The next result gives continuous-time analogues of the conditions for

recurrence and transience found in Theorem 1.5.3. We denote by 7; the
first passage time of (X;)¢>o to state i, defined by

Ti(w) = inf{t > J1(w) : Xi(w) = i}.

Theorem 3.4.2. The following dichotomy holds:
(i) if ¢ = 0 or P;(T; < 00) =1, then i is recurrent and [ p;;(t)dt = oo;
(ii) ifg; > 0 and P;(T; < 00) < 1, then i is transient and fooo pii(t)dt < oo.
Proof. If ¢; = 0, then (X;)¢>o cannot leave %, so i is recurrent, p;;(t) = 1

for all ¢, and fooo pii(t)dt = oo. Suppose then that ¢; > 0. Let NNV; denote
the first passage time of the jump chain (Y,),>0 to state . Then

so i is recurrent if and only if P;(7; < co) = 1, by Theorem 3.4.1 and the
corresponding result for the jump chain.

Write 771(;1) for the (¢,7) entry in II". We shall show that
[e.9] 1 o n
/ pii(t)dt = E 7T§Z- ) (32)
0 N R—

so that 4 is recurrent if and only if fooo pii(t)dt = 0o, by Theorem 3.4.1 and
the corresponding result for the jump chain.
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To establish (3.2) we use Fubini’s theorem (see Section 6.4):

/ pii(t)dt = / Ei(l{Xt:i})dt = Ez/ 1{Xt:i}dt
0 0 0

=E: Y Sni1lpv,—y

n=0

=) Ei(Spi1 | Vo = D)Pi(Yy =4) =
n=0

! iw@.

"t

Finally, we show that recurrence and transience are determined by any
discrete-time sampling of (X¢)¢>o.

Theorem 3.4.3. Let h > 0 be given and set Z,, = Xp,.

(i) Ifi is recurrent for (X¢)¢>o then i is recurrent for (Z,)n>0.

(if) Ifi is transient for (X;);>o then i is transient for (Z,)n>0.

Proof. Claim (ii) is obvious. To prove (i) we use for nh <t < (n+ 1)h the
estimate

pii((n + 1)h) > e~ % p;;(t)

which follows from the Markov property. Then, by monotone convergence

/ Dii (t)dt S h@mh Zp” (nh)
0

n=1

and the result follows by Theorems 1.5.3 and 3.4.2.

Exercise

3.4.1 Customers arrive at a certain queue in a Poisson process of rate A.
The single ‘server’ has two states A and B, state A signifying that he is ‘in
attendance’ and state B that he is having a tea-break. Independently of
how many customers are in the queue, he fluctuates between these states
as a Markov chain Y on {A, B} with Q-matrix

(5 %)
g —B)
The total service time for any customer is exponentially distributed with

parameter u and is independent of the chain Y and of the service times of
other customers.
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Describe the system as a Markov chain X with state-space
{AO,A]_,A2,...}U{BO,B]_7B27...}7

A,, signifying that the server is in state A and there are n people in the
queue (including anyone being served) and B, signifying that the server is
in state B and there are n people in the queue.

Explain why, for some 6 in (0,1], and k£ =0,1,2,...,
P(X hits Ag|Xo = Az) = 0%,
Show that (6 — 1) f(#) = 0, where

FO) =20~ XA+ pu+a+B3)0+N+6)u.

By considering f(1) or otherwise, prove that X is transient if 48 < Aa+/3),
and explain why this is intuitively obvious.

3.5 Invariant distributions

Just as in the discrete-time theory, the notions of invariant distribution
and measure play an important role in the study of continuous-time Markov
chains. We say that A is invariant if

AQ = 0.

Theorem 3.5.1. Let () be a Q-matrix with jump matrix II and let A\ be
a measure. The following are equivalent:

(i) A is invariant;

(ii) pIl = p where p; = X\;q;.

Proof. We have g;(m;; — 6;5) = q;; for all 4, j, so

(WM =1)); = palmiy = 6i5) = > Nigij = (AQ);-

i€l iel

This tie-up with measures invariant for the jump matrix means that we
can use the existence and uniqueness results of Section 1.7 to obtain the
following result.
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Theorem 3.5.2. Suppose that @ is irreducible and recurrent. Then Q) has
an invariant measure A which is unique up to scalar multiples.

Proof. Let us exclude the trivial case I = {i}; then irreducibility forces
q; > 0 for all . By Theorems 3.2.1 and 3.4.1, II is irreducible and recurrent.
Then, by Theorems 1.7.5 and 1.7.6, II has an invariant measure p, which is
unique up to scalar multiples. So, by Theorem 3.5.1, we can take \; = 1;/q;
to obtain an invariant measure unique up to scalar multiples.

Recall that a state i is recurrent if ¢; = 0 or P;(T; < 00) = 1. If ¢; = 0
or the expected return time m; = E;(T;) is finite then we say i is positive
recurrent. Otherwise a recurrent state i is called null recurrent. As in the
discrete-time case positive recurrence is tied up with the existence of an
invariant distribution.

Theorem 3.5.3. Let Q be an irreducible Q-matrix. Then the following
are equivalent:

(i) every state is positive recurrent;

(ii) some state i is positive recurrent;

(iii) @ is non-explosive and has an invariant distribution \.
Moreover, when (iii) holds we have m; = 1/(\;¢;) for all i.

Proof. Let us exclude the trivial case I = {i}; then irreducibility forces
q; > 0 for all i. It is obvious that (i) implies (ii). Define u* = (,u; cjel
by

, TiAC
py =i / Lix,=jyds,
0
where T; A ¢ denotes the minimum of 7T; and ¢. By monotone convergence,

> ph =Ei(T; A ).

jel
Denote by V; the first passage time of the jump chain to state i. By Fubini’s
theorem

o
p; =E; Z Sn+11{y, =jn<ni}

n=0

=Y Ei(Snt1 | Yo = 5)Ei(Ly, =jmneniy)
n=0

= qj_l E; Z Liy, =jn<N;}

n=0

N;—1
=a; " Ei Y Lpviyy = /4
n=0
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where, in the notation of Section 1.7, ’y]i- is the expected time in j between
visits to ¢ for the jump chain.

Suppose (ii) holds, then i is certainly recurrent, so the jump chain is
recurrent, and @ is non-explosive, by Theorem 2.7.1. We know that v*II =
7" by Theorem 1.7.5, so ‘@ = 0 by Theorem 3.5.1. But u¢ has finite total
mass

Z i = Ei(T;) = my
jel
so we obtain an invariant distribution A by setting \; = ,u; /m;.

On the other hand, suppose (iii) holds. Fix ¢ € I and set v; =
Ajq;/(Nigi); then v; = 1 and vII = v by Theorem 3.5.1, so v; > «; for
all 7 by Theorem 1.7.6. So

mi =Y ph=> /g <> vifg

jeI jel jel
= Z)‘j/()\i(h') =1/(N\igi) < o0
jel

showing that 7 is positive recurrent.

To complete the proof we return to the preceding calculation armed

with the knowledge that @ is recurrent, hence II is recurrent, v; = ’y]i- and
m; = 1/(\;q;) for all 4.

The following example is a caution that the existence of an invariant
distribution for a continuous-time Markov chain is not enough to guarantee
positive recurrence, or even recurrence.

Example 3.5.4

Consider the Markov chain (X;)¢>o on Z* with the following diagram,
where ¢; > 0 for all i and where 0 < A=1—-pu < 1:

Aqo Ui A
0 1 1—1 i 1+1

The jump chain behaves as a simple random walk away from 0, so (X;):>0
is recurrent if A < p and transient if A > p. To compute an invariant
measure v it is convenient to use the detailed balance equations

ViQij = V;jQji for all 4, j.
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Look ahead to Lemma 3.7.2 to see that any solution is invariant. In this
case the non-zero equations read

ViNgi = Vig114Giy1 for all 7.

So a solution is given by v; = ¢; ' (\/p)". If the jump rates ¢; are constant
then v can be normalized to produce an invariant distribution precisely
when A\ < p.

Consider, on the other hand, the case where ¢; = 2° for all i and
1 < AMp < 2. Then v has finite total mass so (X;);>o has an invariant
distribution, but (X;);>0 is also transient. Given Theorem 3.5.3, the only
possibility is that (X;):>0 is explosive.

The next result justifies calling measures A with AQ) = 0 invariant.

Theorem 3.5.5. Let () be irreducible and recurrent, and let A be a mea-
sure. Let s > 0 be given. The following are equivalent:

(i) AQ =0;
(ii) AP(s) = A.

Proof. There is a very simple proof in the case of finite state-space: by the
backward equation

d
ds

so AQ = 0 implies AP(s) = AP(0) = A for all s; P(s) is also recurrent, so
wP(s) = p implies that p is proportional to A, so u@ = 0.

AP(s) = A\P'(s) = AQP(s)

For infinite state-space, the interchange of differentiation with the sum-
mation involved in multiplication by A is not justified and an entirely dif-
ferent proof is needed.

Since @ is recurrent, it is non-explosive by Theorem 2.7.1, and P(s) is
recurrent by Theorem 3.4.3. Hence any \ satisfying (i) or (ii) is unique up
to scalar multiples; and from the proof of Theorem 3.5.3, if we fix 7 and set

T;
By = Ei/ Lix,=jydt,
0

then pu@ = 0. Thus it suffices to show uP(s) = u. By the strong Markov
property at 7; (which is a simple consequence of the strong Markov property
of the jump chain)

s T;+s
Ei / ].{Xf:j}dt = EZ/ ].{Xf:j}dt.
0 ‘ T, '

i
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Hence, using Fubini’s theorem,
s+T;
py = Ei/ Lix,=jydt
o S
= /0 Pi( Xt =7, <T;)dt

= / D Pi(Xy =kt < Ty)pr;(s)dt
0

kel

= Z(El /OTi 1{Xt:k}dt>pkj(5)

kel
= ukpr;(s)
kel
as required.

Theorem 3.5.6. Let (Q be an irreducible non-explosive (Q-matrix having
an invariant distribution A. If (X;);>o is Markov(\, Q) then so is (Xs44¢)1>0
for any s > 0.
Proof. By Theorem 3.5.5, for all 4,

P(Xs=1) = (AP(s)); =\
so, by the Markov property, conditional on X, = i, (Xsp¢)i>0 IS
Markov(d;, Q).

3.6 Convergence to equilibrium

We now investigate the limiting behaviour of p;;(¢) as t — oo and its relation
to invariant distributions. You will see that the situation is analogous to the
case of discrete-time, only there is no longer any possibility of periodicity.

We shall need the following estimate of uniform continuity for the tran-
sition probabilities.

Lemma 3.6.1. Let Q be a Q-matrix with semigroup P(t). Then, for all
t,h>0
[pij(t+h) = pij(t) <1 —e %",

Proof. We have

Ipij(t + h)—pi;(t)| =

> bty (0 1)

kel

> pir(h)pri(t) — (1 - pii(h))pij(t)‘
ket
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Theorem 3.6.2 (Convergence to equilibrium). Let @ be an irre-
ducible non-explosive QQ-matrix with semigroup P(t), and having an in-
variant distribution A. Then for all states i, j we have

pij(t) — Aj as t— oo.

Proof. Let (X¢)¢>0 be Markov(é;, Q). Fix h > 0 and consider the h-skeleton
Zyp = Xpp- By Theorem 2.8.4

]P)(Zn+1 = in+1 ‘ ZO = ’io, e ,Zn = Zn) = pinin+1 (h)
80 (Zp)n>0 is discrete-time Markov(d;, P(h)). By Theorem 3.2.1 irreducibil-
ity implies p;;(h) > 0 for all i, j so P(h) is irreducible and aperiodic. By
Theorem 3.5.5, A is invariant for P(h). So, by discrete-time convergence to
equilibrium, for all ¢, j

pij(nh) — A; as n — oo.
Thus we have a lattice of points along which the desired limit holds; we fill
in the gaps using uniform continuity. Fix a state i. Given € > 0 we can
find A > 0 so that
1—e7%%<g/2 for0<s<h
and then find N, so that
]pij(nh)—)\jISE/Z fornZN.

For t > Nh we have nh <t < (n+ 1)h for some n > N and

i (t) = Aj| < |pij(t) — pij(nh)| + |pij(nh) — A;| < e

by Lemma 3.6.1. Hence

pij(t) — A; as n — oo.

The complete description of limiting behaviour for irreducible chains in
continuous time is provided by the following result. It follows from Theorem
1.8.5 by the same argument we used in the preceding result. We do not
give the details.
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Theorem 3.6.3. Let Q be an irreducible (Q-matrix and let v be any dis-
tribution. Suppose that (X;);>o is Markov(v, Q). Then

P(X: =j) — 1/(qgjm;) ast —oo foralljel
where m; is the expected return time to state j.

Exercises

3.6.1 Find an invariant distribution A for the Q-matrix

-2 1 1
Q=4 -4 o0
2 1 -3

and verify that lim;_ o, p11(t) = A1 using your answer to Exercise 2.1.1.

3.6.2 In each of the following cases, compute lim;_,, P(X; = 2| Xy = 1) for
the Markov chain (X;);>¢ with the given Q-matrix on {1,2,3,4}:

2 1 1 0 2 1 1 0
0 -1 1 0 0 -1 1 0

(a) 0 0 -1 1 (b) 0 0 -1 1
1 0 0 -1 0O 0 0 0

1 1 0 0 2 1 0 1

1 -1 0 0 0 -2 2 0

(c) 0 0 -2 2 (d) 0 1 -1 0
0 0 2 -2 0 0 0 0

3.6.3 Customers arrive at a single-server queue in a Poisson stream of rate
A. Each customer has a service requirement distributed as the sum of two
independent exponential random variables of parameter y. Service require-
ments are independent of one another and of the arrival process. Write
down the generator matrix () of a continuous-time Markov chain which
models this, explaining what the states of the chain represent. Calculate
the essentially unique invariant measure for ), and deduce that the chain
is positive recurrent if and only if \/p < 1/2.

3.7 Time reversal

Time reversal of continuous-time chains has the same features found in the
discrete-time case. Reversibility provides a powerful tool in the analysis
of Markov chains, as we shall see in Section 5.2. Note in the following
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result how time reversal interchanges the roles of backward and forward
equations. This echoes our proof of the forward equation, which rested on
the time reversal identity of Lemma 2.8.5.

A small technical point arises in time reversal: right-continuous processes
become left-continuous processes. For the processes we consider, this is
unimportant. We could if we wished redefine the time-reversed process
to equal its right limit at the jump times, thus obtaining again a right-
continuous process. We shall suppose implicitly that this is done, and
forget about the problem.

Theorem 3.7.1. Let Q be irreducible and non-explosive and suppose
that Q has an invariant distribution A. Let T' € (0,00) be given and let
(Xt)o<t<r be Markov(\, Q). Set X’t = Xr_;. Then the process (Xt)OStST
is Markov(A, @), where @ = (qij : i,j € I) is given by A\;qj; = A\iqij. More-

~

over, @) is also irreducible and non-explosive with invariant distribution \.

Proof. By Theorem 2.8.6, the semigroup (P(t) it > O) of @ is the minimal
non-negative solution of the forward equation

P'(t) = P()Q, P(0)=1.

Also, for all ¢ > 0, P(t) is an irreducible stochastic matrix with invariant
distribution A. Define P(t) by

AiDji(t) = Xipi; (1),
then ﬁ(t) is an irreducible stochastic matrix with invariant distribution A,
and we can rewrite the forward equation transposed as

P'(t) = QP(1).
But this is the backward equation for @, which is itself a @Q-matrix, and
P(t) is then its minimal non-negative solution. Hence @ is irreducible and
non-explosive and has invariant distribution A.

Finally, for 0 =ty < ... <t, =T and s; =ty — tx_1, by Theorem 2.8.4
we have

]P)(Xto = ’i(), “e e ,th = Zn) = ]P)(XT—to = ’i(), “e e 7XT—tn = Zn)
= )‘inpin ip—1 (Sn) -+ Piyig (81)
= NigDigir (81) - - - Diy _1i, (80)
so, by Theorem 2.8.4 again, ()?t)ogth is Markov(A, @)

The chain ()?t)()gtST is called the time-reversal of (Xy)o<i<r-
A @Q-matrix Q and a measure A are said to be in detailed balance if

)\iQij = )\iji for all Z,]
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Lemma 3.7.2. If Q and X\ are in detailed balance then A is invariant for

Q.
Proof. We have (AQ); = Zje[ Nigji = Zje[ Aigij = 0.

Let (Xt)i>0 be Markov()A, @), with @ irreducible and non-explosive.
We say that (X;);>¢ is reversible if, for all T > 0, (Xp_;)o<i<r is also
Markov(\, Q).

Theorem 3.7.3. Let Q be an irreducible and non-explosive QQ-matrix and
let X\ be a distribution. Suppose that (X:);>o is Markov(\, Q). Then the
following are equivalent:

(a) (X¢)t>o Is reversible;

(b) @ and X are in detailed balance.

Proof. Both (a) and (b) imply that A is invariant for ). Then both (a) and
(b) are equivalent to the statement that @ = @ in Theorem 3.7.1.

Exercise

3.7.1 Consider a fleet of N buses. Each bus breaks down independently
at rate p, when it is sent to the depot for repair. The repair shop can
only repair one bus at a time and each bus takes an exponential time of
parameter A to repair. Find the equilibrium distribution of the number of
buses in service.

3.7.2 Calls arrive at a telephone exchange as a Poisson process of rate A,
and the lengths of calls are independent exponential random variables of
parameter pu. Assuming that infinitely many telephone lines are available,
set up a Markov chain model for this process.

Show that for large t the distribution of the number of lines in use at
time ¢ is approximately Poisson with mean \/p.

Find the mean length of the busy periods during which at least one line
is in use.

Show that the expected number of lines in use at time ¢, given that n
are in use at time 0, is ne #* + \(1 — e™ ") /p.

Show that, in equilibrium, the number NV; of calls finishing in the time
interval [0,¢] has Poisson distribution of mean At.

Is (Nt)¢>0 a Poisson process?

3.8 Ergodic theorem

Long-run averages for continuous-time chains display the same sort of be-
haviour as in the discrete-time case, and for similar reasons. Here is the
result.
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Theorem 3.8.1 (Ergodic theorem). Let @ be irreducible and let v be
any distribution. If (X;);>¢ is Markov(v, Q)), then

I 1
P lix,—iyds — ast —oo) =1
t 0 miq;

where m; = E;(T;) is the expected return time to state i. Moreover, in the
positive recurrent case, for any bounded function f : I — R we have

]P’(i/otf(Xs)dSHfastﬁoo> =1

where

F=Y_\ifi

iel
and where (\; : i € I) is the unique invariant distribution.

Proof. If ) is transient then the total time spent in any state 4 is finite, so

1 [t 1 [
¢ / 1{XS:i}d3 < ¢ / 1{X5:i}d3 — 0=
0 0

Suppose then that @ is recurrent and fix a state i. Then (X;);>¢ hits ¢
with probability 1 and the long-run proportion of time in ¢ equals the long-

1

myg

run proportion of time in 4 after first hitting ¢. So, by the strong Markov
property (of the jump chain), it suffices to consider the case v = 9;.

Denote by M the length of the nth visit to ¢, by T* the time of the
nth return to ¢ and by L} the length of the nth excursion to i. Thus for
n=0,1,2,..., setting T = 0, we have

MM =inf{t > T : Xy #4i} — T
T =inf{t > T + M X, =4}

n+1 _ gmn+1 n

By the strong Markov property (of the jump chain) at the stopping times
T for n > 0 we find that L}, L?,... are independent and identically dis-
tributed with mean m;, and that M}, M?,... are independent and identi-
cally distributed with mean 1/¢;. Hence, by the strong law of large numbers
(see Theorem 1.10.1)

Li+--4+L7

—m; asn — oo
n

M+ -+ M1
—

n qi

as n — oo
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and hence

M+ + M 1
—

as n — 00
L}+---+ L} miq;

with probability 1. In particular, we note that 7" /Ti”Jrl — lasn —
with probability 1. Now, for T* <t < T, i”“ we have

Tin le_‘__‘_Mzn<1 T~n+1 Mi1+"'+Min+1

t
lyx —pnds < !
Tin+1 Lzl_|_..._|_L;jL — t/O {Xs=i}to = Tn Lll—l—"'—l-L?—H

(2

so on letting t — oo we have, with probability 1

1 [t 1
t / lix,=pds — .
0 m;iq;

In the positive recurrent case we can write

1 t 1 t
" /0 f(Xs)dS_f:Zfi<t /0 1{XS:i}d8—)\i>

iel

where \; = 1/(m;q;). We conclude that

1/Otf(XS)ds—>f as t — 00

with probability 1, by the same argument as was used in the proof of The-
orem 1.10.2.
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